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Finite Electron mass - theory wrong at short distance!

Classical theory replaced by quantum mechanics
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What happens at small r? Large Q?

Large Q
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Pair produce electrons + positrons - neutralize field

Classical theory replaced by quantum mechanics
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Need new theory - “quantum gravity”
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Tests of non-linear nature of gravity
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How well do we know that this law is correct experimentally?
Far from quantum gravity regime

What can we find?
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Ohsarvedalion
from starligM

Velocity
(km s-1)

20,000 30,000

' Distance (light years)

No reason to expect deviations from gravity at long distance - but found dark matter!

What can we hope to find at short distance?
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Light bosonic particles motivated by BSM Physics
(e.g. radions, moduli, relaxions)
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How do we find them?

Take two objects, measure anomalous forces between them
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Measure Relative Acceleration
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Where are we?

Very strong constraints at long (> um) distances

Riverside
Region
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Sensitivity rapidly drops at short (< um) distances
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Short Range => Only material within
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\ affected

Need to deal with thin objects with
high precision

re Progress?
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5. Synchrotron Light Sources?
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Mossbauer Effect

Eo

Excited nuclear state decays via y emission
Can the y be reabsorbed?

Issue: Small nuclear cross-sections
Efficient reabsorption only possible on resonance

Isn’t emitted y at transition energy? Automatically Resonant?
No : Recoiling nucleus takes energy, y outside narrow width



Mossbauer Effect

E] I [— El
.......................................................... > | 2777
E() — EO

Small enough E,, entire lattice recoils!
Negligible lattice kinetic energy - monochromatic E,

Resonant Reabsorption possible!



Mossbauer Effect

E] I [— El
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E() — EO

Small enough E,, entire lattice recoils!
Negligible lattice kinetic energy - monochromatic E,

Resonant Reabsorption possible!

Narrow Nuclear Lines => High Sensitivity to energy shifts
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First order effects irrelevant
Leading Background: Chemical Shift from Casimir




Sensitivity

¢ 2 ¢ hlﬂ/ 2
F . F*_FY° + g¢h |
fv : fg fT

For given coupling, compute energy shift AE

LD Yq®Pqq - G/QW |



L D y,0qq

57Fe AE =105 €V

181Ta AE =107 eV

Ny, =3 X 1014

Sensitivity

¢
/g

¢ 2
Fe A
F”y v

Ry

2
G,

fr

F¥_F"° + goh? -

For given coupling, compute energy shift AE

10-10 [
10-M

10712

1014

10-1°

10-13

10-8

1018
1016
1014 B
1012

1010



Sensitivity

R P 2 M o
LOyedqq+ Fy, + G+ —— PV + goh” + —=¢
! f Y : f g : f T 2
For given coupling, compute energy shift AE
AE = : 10701
VN, | _
1017 3 \\
- \\\ .
57Fe AE =105 ¢V 10-12 AN
s 2 _
181 Ta, AE =101/ ev 10-13 \\\
- \
14 \ _
N,y — 3 x 10 10-14 M
Second Order Casimir Background at N )
shortest distances 107, | .. |
10-8 10-7 10-
Mitigate using differential measurement? A (m)

1018
1016
1014 B
10"

1010



Mossbauer at Synchrotron Source

Synchrotron
Light
Ground State
Nucleus



Mossbauer at Synchrotron Source

Ey
..................... >
..................... >
..................... . E,

Synchrotron
Light All the nuclei

Ground State are coherently
Nucleus driven to
excited state



Mossbauer at Synchrotron Source

Ey
..................... >
..................... >
..................... . E,

Synchrotron
Light All the nuclei

Ground State are coherently
Nucleus driven to
excited state

Short Pulse << Lifetime of State



Mossbauer at Synchrotron Source

Well after pulse, state starts to decay
Coherent initial excitation => decays in phase

Decay along forward direction amplified by in phase addition

k.,
I o
In phase decay Excited

State



Mossbauer at Synchrotron Source

Well after pulse, state starts to decay
Coherent initial excitation => decays in phase

Decay along forward direction amplified by in phase addition
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Resonantly Excite
absorber
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Mossbauer at Synchrotron Source

..................... > TRTERERTERRERRRRTRTY =

d
..................... > TEERTETTRTNRRTERTRTY = <l
..................... > TEEREETTRTRNRRTERTRTY =

Send Synchrotron Pulse

Well after pulse, collimated emission
Measure resonant reabsorption as a function of d

Why?
Clean excitation unlike radioactive decay
May enable new class of ultra narrow Mossbauer




Conclusions

1. Mossbauer Effect seems well suited to probe short distance forces
2. Natural electromagnetic background suppression
3. Ideal for scalar and tensor forces

4. Synchrotron light sources may enable new Mossbauer sources
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Non Linear Quantum Mechanics?

Theory built on observations in the 1900s
Why should it be “the absolute truth”?

What?

Two Postulates of Quantum Mechanics

Probability Linearity

Which?
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Probability

Finite system has a finite set of energies }

Deterministic

[ ° ?
Continuous observables and symmetries Observables?

Could an electron in an atom have a well defined position?

q Infinite
q Degeneracy
Sacrifice Determinism.

Rotation
Preserve finite set of energy states, continuous symmetries and observables

Quantum Mechanics

Bell Inequalities, Kochen-Specker, SSC Theorems
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Causality and Entanglement

Trial Non-Linear Term

zﬁa\f = H U + ¢ (V7 + 0*) U

Entanglement is fundamental to quantum mechanics

W (z,y;t) = Zcij (t) i (z) Bj (y)

1,
Apply some local operation on x: ai(x) -> U ai(x)

Does it instantly change the time evolution of y?

YES
Not causal
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Linearity

Electron Coupled to Electromagnetism

Electron paths do not Paths of two electrons

interact via interact causally (QFT)
electromagnetism

Why can’t path talk to itself?

Natural Language:
Quantum Field Theory
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The Framework
The Schrodinger Picture of Quantum Field Theory

Quantum State of Fields Time Independent
X (t> > (e.g. in Fock states) ¢ (:C) Operators

H:/dgx”;'-[@(x),w(x))

Time Evolution
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The Framework

Yukawa H > /dgzvy¢(x)\f!(zv)\lf(x)

Action

5= [ dt G — b > 61 ([ drvs e @ v ) o)
> ([ Earele@ T @@ o))

Quantum Field Theory O (/ >z y (x (t) | (x) ¥ (x) U (x) A qf‘l“l“r---\x(t»)

Non-linearities in the operators but not in the state
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The Framework

Yukawa H > /d3:6y¢(x)\ff(az)\lf(x)
LinearQFT: S DO (/ Cxy(x(t)]o(x)V (z) ¥ (z)|x (t)})

Non-Linear QFT: Sy > ¢ ( [ @2 0016 ) 1x () ()19 () 0 (2) <t>>)

Obeys all the rules
Higher order in states - leads to state dependent quantum evolution

Analyze non-linearity perturbatively
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Perturbation Theory
H D y@UY = (yo + e(x|o|x)) YW

. O
%5t = Hx)

At zeroth order, this is just standard QFT

At first order, use zeroth order solution - expectation value is simply a background field

Perform standard QFT on this background field to compute first order correction

Applies to all orders : To compute term of given order, only need lower order terms
Lower order terms enter as background fields

Causality: Non-linearity enters via expectation value. At lowest order, causal from QFT.
Causal background field for all higher orders
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Single Particle

LD ydW¥ =y (o4 &(x|olx)) ¥

Suppose we have a Y particle - how does its wave-function evolve?

To zeroth order, Y just sources the o field

Straightforward Computation of Expectation Value

. (x|¢ (z) |x) = [ d*a"y* (') (2') Gr (x — )

2 _— /

Charge Density of Causal Green’s Function



Schrodinger Equation
H D ydUY = (yoé + e(x|o|x)) YW

Single particle equation derived from field theory
Equation depends upon theory (Yukawa, ®4 etc)

iaqjgi’}c) = (H + ¢y [ d*2"U* (2) ¥ (') G (x;27)) ¥ (¢, x)



Schrodinger Equation
H D ydUY = (yoé + e(x|o|x)) YW

Single particle equation derived from field theory
Equation depends upon theory (Yukawa, ®4 etc)

iaqjgi’}c) = (H + ¢y [ d*2"U* (2) ¥ (') G (x;27)) ¥ (¢, x)

Fixed Central particle

Self interaction of wave-function breaks degeneracy of levels




Schrodinger Equation
H D ydUY = (yoé + e(x|o|x)) YW

Single particle equation derived from field theory
Equation depends upon theory (Yukawa, ®4 etc)

iaqjéi’}c) = (H + ¢y [ d*2"U* (2) ¥ (') G (x;27)) ¥ (¢, x)

Fixed Central particle

Self interaction of wave-function breaks degeneracy of levels

Hermitean Form of Hamiltonian implies conserved
norm
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Constraints
What does this do to the Lamb Shift?

Proton at Fixed Location

2S and 2P electron have different charge distribution

Different expectation value of electromagnetic field

Level Splitting!

< X | A " | X> J:u BUT: Cannot decouple center of mass and relative co-ordinates
Proton wave-function spread over some region (e.g. trap size ~100 nm)

Expectation value of electromagnetic field diluted
In neutral atom - heavily suppressed, except at edges!

£ <102

Similarly, kills possible bounds on QCD and gravity
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Experimental Tests

Interferometry - interaction between paths

Take an ion - split its wave-function

Coulomb Field of one path interacts with the other path

Gives rise to phase shift that depends on the

V1—p? . . .
intensity p of the split

Use intensity dependence to combat systematics



Conclusions

1. Quantum Field Theory can be generalized to include non-linear, state dependent
time evolution

2. Conventional tests of gquantum mechanics in atomic and nuclear systems do NOT
probe causal non-linear quantum mechanics

3. Straightforward set of experimental tests possible to probe non-linear quantum
mechanics

4. Motivation to test other extensions as well - e.g. Lindblad Decoherence



