

Quantum Logic Spectroscopy & Clocks II

P. O. Schmidt

QUEST Institute for Experimental Quantum Metrology PTB Braunschweig and Leibniz Universität Hannover

Frontiers of Quantum Metrology for New Physics Searches Bad Honnef Physics School, Physikzentrum Bad Honnef, May 11 - 16, 2025

Overview

- Complete introduction to quantum logic with trapped ions
- Applications:

Al⁺ quantum logic clock

QLS of highly charged ions

QLS of molecules

QUANTUM LOGIC WITH TRAPPED IONS

Atom-light interaction

• Hamiltonian:
$$H = H_a + H_m + H_i$$

• Atom:
$$H_a = \frac{\hbar\omega_o}{2} (|e\rangle \langle e| - |g\rangle \langle g|) = \frac{\hbar\omega_o}{2} \sigma_z$$

- Motion: $H_m = \hbar \omega_z a^{\dagger} a$
- Atom-Light-Interaction: $H_i = -\hat{\vec{d}}\vec{E} = e\hat{\vec{r}}\vec{E}_0\cos(k\hat{z} \omega t + \phi)$

$$\Rightarrow H_{i} = \frac{\hbar\Omega}{2} (\sigma_{+} + \sigma_{-}) \left(e^{i(k\hat{z} - \omega t + \phi)} + e^{-i(k\hat{z} - \omega t + \phi)} \right)$$

with $\Omega = \Omega_{ge} = \frac{e\vec{E}_0}{\hbar} \langle e | \hat{\vec{r}} | g \rangle$ and $\sigma_+ = | e \rangle \langle g |, \sigma_- = | g \rangle \langle e |, Basis: \{ | g, n \rangle, | e, n \rangle \}$

\rightarrow quantum dynamics simulations using QuTiP

[D. J. Wineland et al., J. Res. Natl. Inst. Stand. Technol. 103, 259–328 (1998)]

Quantized atom-light interaction including motion

• Interaction in Lamb-Dicke regime:

- *E* = *const* drives carrier
- $\vec{\nabla}E$ drives sidebands (smaller by η)

[D. J. Wineland et al., J. Res. Natl. Inst. Stand. Technol. 103, 259–328 (1998)]

What happens for $(k\langle \hat{z}^2\rangle)^{1/2} = \eta \sqrt{\langle \Psi | (\hat{a} + \hat{a}^{\dagger})^2 | \Psi \rangle} = \eta_c > 1?$

Higher-order sidebands

 η = 0.28, ω_z = 2 π ×2.2 MHz, T_D \approx 1 mK, \bar{n} \approx 10

[B. Hemmerling et al., Appl. Phys. B 104, 583 (2011)]

Coherent state manipulation

ullet

•

•

•

AL⁺ QUANTUM LOGIC CLOCK

Aluminum as Optical Clock Atom

- Hans Dehmelt 1992 (NP 1989)
- Al⁺ Features:
 - narrow optical transition
 - no electric quadrupole shift
 - small black-body shift
 - But: no accessible cooling transition

Quantum Logic State Transfer

[D.J. Wineland et. al., Proc. 6th Symposium on Frequency Standards and Metrology, 361 (2001); P.O. Schmidt et al., Science, 309, 749 (2005)]

Clock Interrogation Sequence

PTB Al⁺ clock error budget its absolute frequency

Name	Total shift (e-18)	Uncertainty (e-18)	
Excess micromotion	-1.00	Re-Evaluation: $< 5 \times 10^{-19}$	
Cooling laser Stark	-6.0		
Time-dilation shift	-1.79	0.40	
Quadratic Zeeman – dc	-1486.88	0.49	
Quadratic Zeeman – ac	-15.72	0.25	
BBR	-3.34	0.30	
Clock laser Stark	0.00	0.3	
Other shifts	0.72	1.3	
Total	-1521.6	2.6	

NIST Al⁺ clocks:

- 9.4×10^{-19} [Brewer *et al.*, PRL **123**, 033201 (2019)]
- 5.5×10^{-19} [Marshall *et al.*, arXiv:2504.13071]

PTB Al⁺/Sr frequency ratio

- Ramsey interrogation with 250 ms (50 ms Ramsey pulses)
- Duty cycle: 60% (live monitoring of magnetic field & micromotion)
- Small instability thanks to Si-stabilized laser: $6.6 \times 10^{-16} / \sqrt{\tau/s}$
- First clock with EIT cooling while probing
 → long probe times [F. Dawel *et el.*, in preparation]

Al⁺/Sr frequency ratios

Discrepancies currently unresolved

Summary Al⁺ clock

- NIST Al⁺ clock currently most accurate clock: 5.5×10^{-19} [Marshall *et al.*, arXiv:2504.13071]
- Clear path towards 1×10^{-19}
- Discrepancies between frequency ratios measured by different groups
 → more frequency ratio measurements required
- Al⁺ clock transition has a very small sensitivity to new physics
 → anchor transition

QUANTUM LOGIC SPECTROSCOPY OF HIGHLY CHARGED IONS

Highly Charged Ions

Charge state dependence:

- Binding energy $\sim Z^2$
- Hyperfine splitting $\sim Z^3$
- QED effects $\sim Z^4$
- Stark shifts ~ Z⁻⁶

strongly relativistic systems with large QED effects

• optical transitions: fs, hfs, level crossings [Kozlov *et al.* Rev. Mod. Phys **90**, 045005 (2018]

- H \rightarrow U^{91+} (H-like)10 eV \rightarrow 140 keV
- $\mu eV \rightarrow eV$

μeV

 \rightarrow 300 eV

Optical level crossing transitions in HCI

Madelung ordering (neutral)

Coulomb ordering (H-like)

most interesting candidates for many tests of fundamental physics

[Berengut *et al.* Phys. Rev. Lett. **105**, 120801 (2010) Berengut *et al.* Phys. Rev. Lett. **106**, 210802 (2011) Berengut *et al.* Phys. Rev. A **86**, 022517 (2012)]

Testing fundamental physics with HCI

[Reviews: Indelicato, J. Phys. B 52, 232001 (2019), Safronova et al., RMP 90, 025008 (2018), Kozlov et al. RMP 90, 045005 (2018)]

Highly charged ions as optical clocks?

- High accuracy
 - \rightarrow low sensitivity to resonance shifts
- HCI advantage: suppressed shifts

Hydrogen-like HCI:

Linear Stark shift	Z^{-1}		
Second order Stark shift	Z^{-4}		
Linear Zeeman shift	\mathbf{Z}^{0}		
Second order Zeeman shift	Z^{-34}		
Electric quadrupole shift	Z^{-2}		
	2 (204 2)]		

[Berengut et al., PRA 86, 022517 (2012)]

electric & magnetic fields

Other clock species requirements can be fulfilled:

narrow, laser accessible transition, simple level structure, ...

[dozens of proposals, many summarized in: Kozlov et al., Rev. Mod. Phy. 90, 045005 (2018)]

State-of-the-art HCI spectroscopy

Plasma (EBIT)

Grating spectrometer

Problem:

- Electron beam ion trap (EBIT) is a noisy environment
- No cycling transition for cooling & state detection

Solution:

- Paul trap environment
- cooling & detection
 - ➔ Quantum Logic Spectroscopy

Doppler-limited resolution of $\sim 150 \; \text{MHz}$

Approach to precision HCI spectroscopy: CryPTEx-PTB

Specs vacuum system:

- Vacuum: < 10⁻¹⁴ mbar
 → HCI lifetime: ~ 100 min
- Temperature: < 5 K
- Vibrations: < 20 nm
- Magnetic field: < 200 pT

Specs EBIT:

- Magnetic field: 0.86 T (72 permanent magnets)
- Acceleration voltage: 10 kV
- Current: > 80 mA

Specs ion trap:

- 5 segments, Au-coated Al₂O₃, 0.7 mm ionelectrode distance
- Trapping frequencies:
 > 1 MHz
- Heating rates: $\sim 1 \text{ 1/s}$
- f/# ~ 1 imaging with bi-aspheric lens

Slowing & Cooling

[Schmöger et al., Rev. Sci. Instrum. 86, 103111 (2015)]

Sympathetic Doppler cooling of a HCI

Preparation & Lifetime of a 2-Ion Crystal

- total preparation time of Be⁺/Ar¹³⁺ crystal: ~ few min
- Ar¹³⁺ lifetime: τ ~ 100 min
 → residual pressure: < 10⁻¹⁴ mbar (assuming Langevin collisions)
- Sideband cooling to the motional ground state ($T < 3 \mu$ K)

Doppler cooling & charge state identification

 single Be⁺ axial frequency: 0.995 MHz
 → Be⁺/Ar¹³⁺ axial frequencies: 1.47 MHz and 1.99 MHz

Sympatetic ground state cooling of Ar¹³⁺

- resolved Raman sideband cooling on Be⁺
- Lamb-Dicke parameter: $\eta_z = 0.82 \sqrt{MHz/\nu_z}$

[King *et al.*, in preparation]

Quantum Logic State Transfer

[D.J. Wineland et. al., Proc. 6th Symposium on Frequency Standards and Metrology, 361 (2001); P.O. Schmidt et al., Science, 309, 749 (2005)]

First Ar¹³⁺ signal

via red sideband (RSB) excitation on Be⁺

Quantum Logic Spectroscopy of Ar¹³⁺

spectroscopy laser transfer locked of Ar¹³⁺ to Si cavity-stabilized laser
 [Sterr & Benkler @ PTB: D. G. Matei *et al.*, Phys. Rev. Lett. **118**, 263202 (2017)]

Ar¹³⁺ levels, spectrum & preparation

QL state preparation sequence

• Coherent manipulation on HCI

Dissipation via ground state cooling on Be⁺

Ar¹³⁺ Zeeman structure

→ measurement of ground- and **excited** state g-factors with <10 ppm

Systematic shifts for Ar¹³⁺

Shift source	Mitigation	Shift (10 ⁻¹⁸)	$\begin{array}{c} \text{Uncertainty} \\ (10^{-18}) \end{array}$		
Micromotion	Real-time measurement	-443	22	٦	
AC Zeeman shift	Calibration at much higher powers and extrapolation	0	2	}	no fundamen
First-order Doppler	Counter-propagating beams	0	< 1		⁴⁰ Ar ¹³⁺
Electric quadrupole	Small coefficient, averaging over multiple Zeeman components	0	< 1		estimate unc
Linear Zeeman	Averaging over multiple Zeeman components	0	< 1		
Quadratic Zeeman	Small coefficient, small field	< 1	≪ 1		8 orders
2 nd order Doppler	Algorithmic cooling [King <i>et al.</i> , PRX 11 , 041049 (2021)]	-1	< 1		impr

no fundamental limitations

 40 Ar¹³⁺ clock with 2.2 × 10^{-17} estimated systematic uncertainty

8 orders of magnitude improvement

atomic data from: [Y-M. Yu and B.K. Sahoo, PRA **99**, 022513 (2019)]

[King, Spieß et al., Nature 611, 43-47 (2022)]

Cooling challenges....

Large q/m mismatch between ions

→ large difference in radial amplitudes
→ inefficient cooling of radial modes

[King et al., PRX 11, 041049 (2021)]

Ground-state cooling using quantum logic

Algorithmic cooling: results

[King et al., PRX 11, 041049 (2021)]

Clock operation

Frequency ratio measurement Ar¹³⁺/Yb⁺ E3

- Frequency ratio uncertainty limited by Ar¹³⁺ excited state lifetime to $\sim 3 \times 10^{-14} / \sqrt{\tau}$
- Measurements to $\sim 1 \times 10^{-16}$ statistical uncertainty for $^{40}\text{Ar}^{13+}$ and $^{36}\text{Ar}^{13+}$
- Yb⁺ E3 absolute frequency known with 1.3×10^{-16} fractional uncertainty

[King, Spieß et al., Nature 611, 43-47 (2022)]

ISOTOPE SHIFT SPECTROSCOPY & SEARCH FOR 5TH FORCES/DARK MATTER

Current work

- Clock candidate: ⁵⁸Ni¹²⁺
 [Yu & Sahoo, Phys. Rev. A 97, 041403 (2018); Chen *et al.*, Phys. Rev. Res. 6, 013030 (2024)]
- observed logic transition at 512 nm
- Challenge: clock transition energy uncertainty of several THz (few nm)
 → improved calculations by M. Safronova
 → efficient search strategies
 [Chen et al., Phys. Rev. Appl. 22, 054059 (2024);
 Cheung et al., arXiv:2502.05386]
- future prospects: multi-ion HCl [Zawierucha *et al.*, PRA **110**, 013107 (2024); Pelzer *et al.*, PRL **133**, 033203 (2024)]

Outlook

Future: further tests of fundamental physics

- dark matter & *α*-sensitive level-crossings:
 - Pr⁹⁺ [Bekker *et al.*, Nat. Commun. **10**, 5651 (2019)]
 - Ir¹⁷⁺ [Windberger *et al.*, PRL **114**, 150801 (2015)]
 - Cf¹⁵⁺ & Cf¹⁷⁺ [Porsev et al., PRA 102, 012802 (2020)]
 also: V. Schäfer (MPIK), G. Barontini (Birmingham)

Other ideas

- Ba⁴⁺, Pr¹⁰⁺: S. Brewer (Colorado State)
- XUV clocks: J. Crespo (MPIK)
- few-electron HCI: P. Micke (GSI/Jena)

Emerging field with many new ideas & applications!

Summary

- Quantum logic spectroscopy is a powerful & versatile technique
 - full coherent control over internal & external degrees of freedom
 - dissipation for cooling & state-preparation on logic ion
 - enables readout and manipulation of "complicated" spectroscopy species
- Al⁺ clock with 5.5×10^{-19} systematic uncertainty
- Highly charged ions

Bright future for quantum logic spectroscopy & applications

- Molecular ions [Wolf *et al.*, Nature **530**, 457 (2016) Chou *et al.*, Nature **545**, 203 (2017)
 - Sinhal *et al.*, Science **367**, 1213 (2020) Chou *et al.*, Science **367**, 1458 (2020)]
- (Anti-)Protons are next [Nitzschke *et al.*, Adv. Quant. Techn. **3**, 1900133 (2020)]

Quantum Logic Spectroscopy Group

- Christian Lisdat, Sören Dörscher et al.
- Nils Huntemann, Melina Filzinger, Martin Steinel, Richard Lange
- Erik Benkler, Uwe Sterr

Master PhD/PostDoc

openings

Collaborators:

- J. Crespo López-Urrutia (MPIK, Heidelberg)
- A. Surzhykov, V. Yerokhin (PTB, TU Braunschweig, MPIK)
- E. Fuchs (LUH & PTB)
- K. Hammerer (LUH, Hannover)
- J. Berengut (U. of New South Wales)
- M. Safronova (U. of Delaware)

ERC Adv. Grant "FunClocks"

3	Niedersächsisches Ministerium
	für Wissenschaft und Kultur

Unterstützt von J Supported by

Alexander von Humboldt Stiftung/Foundation

www.quantummetrology.de

Terro CRC 1464 CRC 1227

