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We introduce the pCI software package for high-precision atomic structure calculations. The standard method 
of calculation is based on the configuration interaction (CI) method to describe valence correlations, but can be 
extended to attain better accuracy by including core correlations via many-body perturbation theory (CI + MBPT) 
or the all-order (CI + all-order) method. The software package enables calculations of atomic properties, includ-
ing energy levels, 𝑔-factors, hyperfine structure constants, multipole transition matrix elements, polarizabilities, 
and isotope shifts. It also features modern high-performance computing paradigms, including dynamic memory 
allocations and large-scale parallelization via the message-passing interface, to optimize and accelerate compu-
tations. To improve accuracy of the calculations, we include a supplementary program package to calculate QED 
corrections via a variant of QEDMOD, as well as a package to include core correlations.

Program summary

Program Title: pCI
CPC Library link to program files: https://doi.org/10.17632/2kn5npnxj7.1
Developer’s repository link: https://github.com/ud-pci/pCI
Licensing provisions: GPLv3
Programming language: Fortran
Supplementary material: Documentation available at https://pci.readthedocs.io
Nature of problem: Calculation of atomic and ionic properties, including energy levels, hyperfine structure con-
stants, multipole transition matrix elements, and polarizabilities.
Solution method: The software package calculates energies and associated wave functions for the desired atomic 
states using the configuration interaction method. Using calculated wave functions, different atomic properties 
can be obtained, including 𝑔-factors, hyperfine structure constants, multipole transition amplitudes, polarizabil-
ities, and others.
Additional comments including restrictions and unusual features: All serial programs have been compiled and tested 
with the freely available Intel Fortran compilers “ifx” and “ifort”, and all parallel programs with the OpenMPI 
wrapper “mpifort” for Intel Fortran compilers.
One-electron orbitals outside the nucleus are defined on the radial grid points. Inside the nucleus, they are 
described in a Taylor expansion over 𝑟∕𝑅, where 𝑅 is the nuclear radius.
This software package is not designed for calculations of high Rydberg states and continuous spectrum. The 
parallel programs are intended to be run on large computing clusters.
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1. Introduction

Accurate atomic theory is indispensable to the design and interpre-
tation of a wide range of experiments, with direct experimental mea-
surement of relevant parameters being infeasible or impossible. Many 
applications, ranging from studies of fundamental interactions to the 
development of future technologies, require precise knowledge of var-
ious atomic properties, such as energy levels, wavelengths, transition 
rates, branching ratios, lifetimes, hyperfine constants, polarizabilities, 
and others. The need for high-precision atomic modeling has increased 
significantly in recent years with the development of atom-based quan-
tum technologies for a wide range of fundamental and practical appli-
cations.

Further rapid advances in applications involving complex atoms re-
quire accurate knowledge of basic atomic properties, most of which 
remain highly uncertain and difficult to measure experimentally. More-
over, the lack of reliable data hinders the search for further applications 
of rich and complex atomic structures. In summary, there is a demon-
strated need for high-quality atomic data and software in several scien-
tific communities.

We have developed and tested state-of-the-art relativistic atomic 
codes [1–5] capable of computing a wide variety of atomic proper-
ties for a large number of atoms and ions [6–13], including negative 
ions [14,15] and highly charged ions [4,16–21]. The data computed 
by these codes are needed for a wide science community working in 
the fields of quantum information and simulation [6,12,22], degenerate 
quantum gases [23,24], atomic clocks [11,25,26], precision measure-
ments [7,20,9,10], studies of fundamental symmetries [27–29], dark 
matter searches [30,31], and many others. Atomic data are also highly 
demanded by the astrophysics [16–18,32], plasma physics [33,34], and 
nuclear physics [35–37] communities. This work makes these codes 
user-friendly and available to the scientific community, with specific 
examples demonstrating the capabilities of the code package.

Several ab initio atomic structure codes have been developed for 
public use in the last few decades. The NIST MCHF/MCDHF database 
contains not only collections of transition data, but also several atomic 
structure packages, based on different relativistic theories and com-
putational methods [38]. These include ATSP2K, a multiconfiguration 
Hartree-Fock (MCHF) + Breit Pauli atomic structure package [39], and 
GRASP2K, which implements the fully relativistic multiconfiguration 
Dirac-Hartree-Fock (MCDHF) method for large-scale calculations [40]. 
Other commonly used and documented atomic structure codes based 
on configuration interaction (CI) include CIV3, which calculates the 
CI wave functions and the electric-dipole oscillator strengths [41]. 
SUPERSTRUCTURE calculates the bound-state energies and associ-
ated radiative data in 𝐿𝑆-coupling and intermediate coupling [42]. 
The COWAN code utilizes a semi-empirical approach based on the CI 
method, where orbitals can be rescaled using least-squares fits to experi-
mental data [43]. HULLAC uses CI and the parametric potential method 
to calculate atomic structure and cross sections for collision and ra-
diative processes [44]. The ATOM computer program system describes 
the atomic structure and processes based on Hartree-Fock (HF) and the 
random phase-exchange approximation [45,46]. FAC calculates vari-
ous atomic radiative and collision processes based on the relativistic CI 
method [47]. These codes were developed decades ago; some of them 
have some recent updates, including dynamic memory allocation and 
limited parallelization.

Modern applications require a much higher accuracy for a wider 
range of atomic properties than can be calculated with older codes. The 
first steps have been taken recently with the release of the GRASP2018 
and AMBiT software packages. The GRASP2018 package introduces 
parallelism using the Message Passing Interface (MPI) and other op-
timizations to the original GRASP2K programs [48], and the AMBiT 

software package features hybrid MPI + OpenMP parallelism to take full 
advantage of modern HPC architectures [49]. The pCI software package 
released here is an adaptation of the CI-MBPT code package, which im-
plements CI with many-body perturbation theory (MBPT). In addition 
to the pure CI and CI + MBPT methods, pCI extends its capabilities with 
the CI + all-order approach. We ported the previous serial code package 
for use on the latest HPC architectures, enabling efficient code execu-
tion on large-scale computation facilities, in order to treat a wider range 
of problems beyond the original code package’s capabilities.

In general, the pCI software package can be applied to any atomic 
system, but the degree of accuracy attainable will depend on several 
factors, including the number of valence electrons, where they lie in 
the periodic table, where the states of interest lie in the spectrum, and 
the amount of computational resources available for the calculations. 
Note that by valence electrons, we refer to the number of electrons in-
cluded in the CI. pCI has been extensively used for calculations of the 
properties of atomic systems with up to 60 electrons included in the 
CI [4,2]. The modern high-performance computing methodologies em-
ployed here significantly expand the class of problems that the original 
CI-MBPT [3] and the CI + all-order package [5] were capable of solving. 
Since the conception of our parallel programs, the pCI software pack-
age has been utilized to calculate the atomic properties of a wide range 
of atomic systems, including those of neutral atoms [7,9,6,8], highly 
charged ions [4,19,20,17], and negative ions [14,15]. The breadth of 
applications related to these computations spanned from astrophysics 
to the development of novel atomic clocks and tests of fundamental 
physics.

The previously developed CI + MBPT and CI + all-order codes have 
been demonstrated to produce accurate results for atomic systems with 
2-3 valence electrons [36,50–52]. The pCI package extends its capabil-
ities to systems with 2-6 valence electrons. For example, in divalent Sr, 
a calculated magic wavelength value was confirmed to within 0.03% of 
a experimental measurement [6]. In 4-valent La−, calculated resonance 
energies agreed with experimental values to within 0.3% for low-lying 
states, and within 3% for higher-lying states [14]. In 6-valent Cr, 𝐸1
matrix elements were obtained with agreement within 2.5% [9]. We 
have found similar accuracy in other systems with 2-6 valence elec-
trons [7,8,15,32,26,53]. If the number of valence electrons is larger than 
5-6, then either the pure CI method should be applied [4,19,17,18], or 
one can try a modified variant of CI + MBPT, as suggested in Ref. [54].

The newly developed programs were designed to be backward com-
patible with the auxiliary codes of the CI-MBPT code package [3], that 
is, they work naturally with the programs that extend the CI method to 
CI + MBPT, as well as the auxiliary programs that allow manipulation of 
the CI space. Users who wish to utilize the auxiliary codes of the 2015 
CI-MBPT code package can refer to Ref. [3] for instructions.

The pCI programs are also compatible with programs that extend 
the CI method with the linearized coupled-cluster (all-order) approach. 
The all-order package is a standalone set of programs that employs the 
linearized coupled-cluster method with single- and double excitations 
for atomic structure calculations. It is used to construct an effective 
Hamiltonian [5], which the CI then uses instead of the bare Hamil-
tonian. The inclusion of the all-order package enables high-precision 
computation for atoms and ions with a few valence electrons, gen-
erally significantly improving accuracy compared to the CI-MBPT ap-
proach [5,6,12,22–24,11,25,26,7,9,10]. The CI + all-order package was 
tested up to six valence electrons [9]. A Fortran 77 version of this pack-
age is included in the pCI distribution, while a modern Fortran 90 ver-
sion will be released in a future work. The all-order part of the package 
also includes a new faster MBPT code which can be used as a standalone 
code to implement the CI + MPBT method, replacing the codes released 
with the 2015 CI-MBPT package. We recommend the user to use the new 
MBPT variant. pCI can also utilize some capabilities of the QEDMOD 
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package of Ref. [55] to include contributions from quantum electrody-
namics (QED). A set of compatible QED-related programs is included in 
the pCI distribution.

The names of most programs, input files, and output files are identi-
cal with those of the 2015 CI-MBPT package. The only exception are the 
programs that now utilize MPI parallelism, which have been prepended 
with a “p” to distinguish between the serial and parallel programs. The 
input and output files of the core pCI programs will be described in 
Sec. 4. The major changes to the serial programs have been modern-
ization efforts from Fortran 77 (F77) to Fortran 90 (F90). pCI has been 
utilized with up to 2048 computing cores and up to 32 TB of memory 
on the developers’ in-house computer clusters Caviness and DARWIN 
at the University of Delaware. It has achieved near-perfect linear scal-
ability and efficiency with the number of processors [2], and will be 
discussed in detail in Sec. 5.

The pCI software package is open source and is actively being devel-
oped and maintained on GitHub in the dev branch, with tested updates 
pushed to the main branch. It is recommended to pull the pCI distri-
bution from the main branch. Users are welcome to contribute to the 
project by submitting issues or pull requests on GitHub.

This paper is summarized as follows. First, the theory of atomic struc-
tures and methods of computation is discussed. Next, an overview of 
the pCI software package, including instructions on how to install and 
compile the programs, is given. Detailed explanations of the core pro-
grams, including their purpose, input files, and output files, are given 
in the proceeding section. Then, the scalability and efficiency of the 
parallel programs are showcased. An example of a standard pCI work-
flow is demonstrated by computing the energies and oscillator strengths 
of highly charged Fe16+. Following this, pCI-py, a set of helper scripts 
written in Python, is introduced to automate the pCI workflow. This sim-
plifies and improves the user experience by automating tedious tasks, 
such as writing input files for each program. Finally, an example of 
using these pCI-py scripts is given to calculate energies, reduced 𝐸1
matrix elements, as well as static and dynamic polarizabilities of neu-
tral Sr.

2. Theory

A standard approach to many-electron systems is to divide all elec-
trons into core and valence electrons. In this way, we can separate the 
electron-electron correlation problem into two parts: one describing the 
valence-valence correlations under the frozen-core approximation, and 
the other describing the core-core and core-valence correlations.

In the initial approximation, we start from the solution of the re-
stricted Hartree-Fock-Dirac (HFD) equations in the central-field approx-
imation to construct one-electron orbitals for the core and valence elec-
trons. Virtual orbitals can be constructed from B-splines or other means 
to account for correlations. The valence-valence correlation problem is 
solved using the CI method, while core-core and core-valence correla-
tions are included using either MBPT [3] or the all-order method [5]. In 
either case, an effective Hamiltonian is formed in the CI valence space, 
then diagonalized as in the usual CI method to find energies and wave 
functions for the low-lying states.

In the valence space, the CI wave function is constructed as a linear 
combination of all distinct states of a specified angular momentum 𝐽
and parity.

Ψ𝐽 =
∑
𝑖 
𝑐𝑖Φ𝑖, (1)

where the set 
{
Φ𝑖

}
are Slater determinants, enumerated by the index 

𝑖, generated by exciting electrons from a set of reference configurations 
to higher orbitals. Varying the coefficients 𝑐𝑖 results in an eigenvalue 
problem∑
𝑗

𝐻𝑖𝑗𝑐𝑗 =𝐸𝑖𝑐𝑖, (2)

where 𝐻𝑖𝑗 = ⟨Φ𝑖|𝐻|Φ𝑗⟩. This is solved in matrix form, where standard 
diagonalization routines can be used to find the lowest eigenvalues and 
eigenvectors. The energy matrix of the CI method can be obtained as a 
projection of the exact Hamiltonian 𝐻 onto the CI subspace

𝐻CI =𝐸core +
∑

𝑖>𝑁core

ℎCI
𝑖

+
∑

𝑗>𝑖>𝑁core

𝑉𝑖𝑗 , (3)

where 𝐸core is the energy of the frozen core, 𝑁core is the number of core 
electrons, ℎCI

𝑖
accounts for the kinetic energy of the valence electrons 

and their interaction with the central field, and 𝑉𝑖𝑗 accounts for the 
valence-valence interaction.

The CI + MBPT and CI + all-order approaches allow core excitations to 
be incorporated in the CI method by forming an effective Hamiltonian 
including core-valence correlation corrections. Here, we include one-
and two-electron correlation potentials Σ1 and Σ2 into the CI Hamilto-
nian:

𝐻CI
1 →𝐻CI

1 + Σ1,

𝐻CI
2 →𝐻CI

2 + Σ2,

where 𝐻CI
1 and 𝐻CI

2 are one- and two-electron parts of the Hamiltonian, 
respectively.

Defining |𝐽𝑀⟩ and |𝐽 ′𝑀 ′⟩ as many-electron states obtained from 
CI, with total angular momenta 𝐽 and 𝐽 ′, and projections 𝑀 and 𝑀 ′, 
a density matrix can be formed in terms of one-electron states |𝑛𝑙𝑗𝑚⟩
�̂� = 𝜌𝑛𝑙𝑗𝑚,𝑛′𝑙′𝑗′𝑚′ |𝑛𝑙𝑗𝑚⟩⟨𝑛′𝑙′𝑗′𝑚′|, (4)

where

𝜌𝑛𝑙𝑗𝑚,𝑛′𝑙′𝑗′𝑚′ = ⟨𝐽 ′𝑀 ′|𝑎†
𝑛′𝑙′𝑗′𝑚′𝑎𝑛𝑙𝑗𝑚|𝐽𝑀⟩. (5)

Here, unprimed indices refer to the initial state, while primed indices 
refer to the final state. The many-electron matrix element can then be 
written as

⟨𝐽 ′𝑀 ′|𝑇𝐿
𝑞
|𝐽𝑀⟩ = Tr 𝜌𝑛𝑙𝑗𝑚,𝑛′𝑙′𝑗′𝑚′⟨𝑛′𝑙′𝑗′𝑚′|𝑇𝐿

𝑞
|𝑛𝑙𝑗𝑚⟩, (6)

where the trace sums over all quantum numbers (𝑛𝑙𝑗𝑚) and (𝑛′𝑙′𝑗′𝑚′), 
and 𝑇𝐿

𝑞
is the spherical component of the tensor operator of rank 𝐿. 

Invoking the Wigner-Eckart theorem, one obtains the reduced matrix 
element

⟨𝐽 ′‖𝑇𝐿‖𝐽⟩ = Tr 𝜌𝐿
𝑛𝑙𝑗,𝑛′𝑙′𝑗′⟨𝑛′𝑙′𝑗′‖𝑇𝐿‖𝑛𝑙𝑗⟩, (7)

where

𝜌𝐿
𝑛𝑙𝑗,𝑛′𝑙′𝑗′ = (−1)𝐽 ′−𝑀 ′

(
𝐽 ′ 𝐿 𝐽

−𝑀 ′ 𝑞 𝑀

)−1

×
∑
𝑚𝑚′

(−1)𝑗′−𝑚′
(

𝑗′ 𝐿 𝑗

−𝑚′ 𝑞 𝑚

)
𝜌𝑛𝑙𝑗𝑚,𝑛′𝑙′𝑗′𝑚′ . (8)

When calculating matrix elements, it is often essential to include 
core-valence correlations. Just as we introduce an effective Hamiltonian 
for CI to account for core-valence correlations, we introduce effective 
one-electron operators (𝑇𝐿

𝑞
)eff for calculations of desired observables. 

These are determined using the random-phase approximation (RPA), 
which describes a screening of the external field by the core electrons. 
The RPA corrections are described in more detail in Appendix C.

The HFD and CI methods described here are implemented as core 
functionality of the pCI software package. Implementations of the 
CI + MBPT and CI + all-order approaches are available as optional exten-
sions of the pCI package and are described in the respective sections of 
Appendix A. A detailed description of the CI + MBPT and CI + all-order 
approaches are given in Refs. [3] and [5], respectively.
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Fig. 1. Schematic of the pCI software package. The solid light blue boxes represent the core programs, while the dashed gray boxes represent optional modules. 1 A 
Fortran 77 version of the all-order package is included in the pCI software package, under the lib/all-order directory. An updated Fortran 90 version of the 
package will be released at a future date. 2 A Fortran 77 version of the MBPT package can be found in Ref. [3]. 3 The QED package is included in the pCI software 
package, under the lib/qed directory. 4 The RPA package is included in the pCI software package, under the lib/rpa directory. (For interpretation of the colors 
in the figure(s), the reader is referred to the web version of this article.)

3. Overview of the package

In this section, we provide an overview of the core functionality of 
the pCI software package (see Fig. 1). The first task is the basis set con-
struction, which is handled by the hfd and bass programs. After the 
basis set construction, a list of configurations is constructed using the
add program to define the CI space. The CI calculation is performed 
by running the pbasc and pconf programs to obtain the desired ener-
gies and associated wave functions. Atomic properties, such as 𝑔-factors, 
electric and magnetic multipole transition matrix elements, and hyper-
fine structure constants, can then be computed using the pdtm program. 
Finally, valence polarizabilities can be obtained using the pol program.

3.1. Installation

pCI has been developed and tested on Linux operating systems, us-
ing the OpenMPI library with freely available Intel Fortran compilers. It 
has been designed to be run on high performance computing platforms. 
Successful compilation and execution of the programs is not guaranteed 
on other operating systems, compilers or MPI implementations. Several 
programs also utilize Intel MKL’s built-in LAPACK and ScaLAPACK rou-
tines to solve eigenproblems.

Installation instructions are documented and maintained in the IN-
STALL.md file in the root directory of the pCI distribution. The software 
package is developed and maintained on GitHub (https://github.com/
ud-pci/pCI), along with the software documentation. The documenta-
tion is hosted by Read the Docs (https://pci.readthedocs.io). Users can 
download the latest version of the pCI software package from the GitHub 
repository or clone the latest version using git:

git clone https://github.com/ud -pci/pCI.git

After downloading the source files, the programs can be compiled 
using the CMake build tool and the CMakeLists.txt files in the root 
and src directories. Additional optimized and debugging builds are de-
scribed in the INSTALL.md file.

The lib directory of the pCI distribution includes compatible F77 
versions of a QED package [55], all-order package [1], and RPA pro-
grams [3]. There is also a Makefile that allows simple compilation of 
the respective programs via standard make execution. Running make 
install will install all F77 programs to the bin directory, where the 
pCI programs are installed by default.

4. Description of programs

In this section, we describe the main programs of the pCI software 
package in more detail (see Table 1).

4.1. Input and output files

Before discussing the individual programs, we give brief descriptions 
of all the input and output files associated with the pCI software pack-
age.

Each program requires an input file:

• HFD.INP - list of parameters for hfd program
• BASS.INP - list of parameters for bass program
• ADD.INP - list of parameters for add program
• CONF.INP - list of parameters for pbasc, pconf, pdtm, and pol

programs

and outputs the following files:

• hfd and bass
– HFD.DAT - basis set radial orbitals 𝜙𝑛𝑙𝑗 and radial derivatives of 

the orbitals 𝜕𝑟𝜙𝑛𝑙𝑗

– HFD.RES - contains the outputs of the hfd program
– BASS.RES - contains the outputs of the bass program

• pbasc
– CONF.DAT - basis set radial orbitals 𝜙𝑛𝑙𝑗 and functions 𝜒𝑛𝑙𝑗 =

ℎrDF𝜙𝑛𝑙𝑗 , where ℎrDF is the radial part of the DF operator

– CONF.GNT - angular factors 𝐺𝑘
𝑞
(𝑓𝑖) (Eq. (12))
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Table 1
List of the pCI software package programs and their input and output files. The columns “Program” and “De-
scription” lists the names and main capabilities of the core programs, respectively. The column “Input (text)” 
lists user-defined text input files. The column “Input (binary)” lists binary input files that are themselves con-
structed from a program (the SGC.CON file is a text file). The files given in parentheses are optional, and 
used or created only in certain conditions. See Section 4.1 for more detail about the various input and out-
put files.

Program Description Input (text) Input (binary) Output Results 
hfd Solves HFD equations HFD.INP (HFD.DAT) HFD.DAT HFD.RES

bass Constructs basis set BASS.INP HFD.DAT HFD.DAT BASS.RES

add Constructs configuration list ADD.INP CONF.INP

pbasc Calculates radial integrals CONF.INP HFD.DAT CONF.DAT BASC.RES

CONF.INT

CONF.GNT

pconf Performs CI calculation CONF.INP CONF.DAT CONF.DET CONF.RES

ci.in CONF.INT CONF.XIJ CONF.ENG

CONF.GNT (CONFp.JJJ) CONF.LVL

(SGC.CON) (CONFp.HIJ) FINAL.RES

(SCRC.CON) LEVELS.RES

CONFSTR.RES

pdtm Calculates matrix elements CONF.INP CONF.DAT DTM.INT (DM.RES) 
dtm.in CONF.DET or 

CONF.XIJ (TM.RES) 
(CONF1.DET) (Operator.RES)a

(CONF1.XIJ) 

pol Calculates polarizabilities CONF.INP DTM.INT POL.RES

pol.in CONF.DAT POL_E1.RES

CONF.HIJb

CONF.JJJb

CONF.DET

CONF.XIJ

CONF0.DET

CONF0.XIJ

a Separate files are generated for each specified operator (see Section 4.4.1 for more detail).
b The pconf program creates the CONFp.HIJ and CONFp.JJJ files. These are processed by the program

sort, which sorts and formats them into the right format for pol (see Section 4.4.2 for more detail).

– CONF.INT - one- and two-electron radial integrals
– BASC.RES - contains the outputs of the pbasc program

• pconf
– CONF.DET - list of determinants
– CONFp.HIJ - list of matrix elements of the Hamiltonian (gener-

ated only if Kw=1 in ci.in)
– CONFp.JJJ - list of matrix elements of the operator 𝐽 2 (gener-

ated only if Kw=1 in ci.in)
– CONF.XIJ - calculated eigenvectors and eigenvalues
– CONF.ENG - tables of calculated quantum numbers 𝐽𝑖 and energy 

eigenvalues 𝐸𝑖 calculated each time CONF.XIJ is constructed 
during the Davidson procedure

– CONF.LVL - tables of top contributing configurations for each en-
ergy level calculated each time CONF.XIJ is constructed during 
the Davidson procedure

– CONF.RES - contains the outputs of the pconf program
– FINAL.RES - final table of quantum numbers 𝐽𝑖 and energy 

eigenvalues 𝐸𝑖

– LEVELS.RES - final table of top contributing configurations for 
each energy level

– CONFSTR.RES - list of top contributing configurations along with 
their atomic term symbol for each energy level

• pdtm
– DTM.INT - radial integrals for all one-electron operators included 

in pdtm program
– DTM.RES - contains the outputs of the pdtm program
– Operator.RES - optional tables summarizing results of matrix 

element calculations for the specified operators

• pol
– POL.RES - contains the outputs of the pol program
– POL_E1.RES - final table of E1 polarizabilities

4.2. Basis sets

The hfd and bass programs are responsible for the construction of 
the basis sets used in the CI calculations. The hfd program solves the 
HFD equations to obtain Dirac-Fock (DF) orbitals, which bass can then 
use to construct the basis set.

4.2.1. hfd
The hfd program solves the restricted Hartree-Fock-Dirac (HFD) 

equations self-consistently under the central field approximation to 
find four-component DF orbitals and eigenvalues of the HFD Hamil-
tonian. The program provides the initial approximation, storing both 
one-electron basis radial orbitals

𝜙𝑛𝑙𝑗 = 𝑟

(
𝑓𝑛𝑙𝑗
−𝑔𝑛𝑙𝑗

)
, (9)

as well as the radial derivatives of the orbitals, 𝜕𝑟𝜙𝑛𝑙𝑗 . A more detailed 
description of this program is given in Refs. [56,3].

4.2.2. bass
The bass program constructs the basis set starting from the DF or-

bitals for the core and valence orbitals, formed by the hfd program. It 
takes as input the file HFD.DAT, which contains the DF orbitals. Then 
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virtual orbitals are added to account for correlations and are constructed 
from either (1) previously constructed DF orbitals or (2) B-splines.

In the first case, virtual orbitals are formed using a recurrent pro-
cedure described in Ref. [57,3]. The lowest virtual orbitals can be con-
structed from the DF orbitals. The large component of the radial Dirac 
bispinor, 𝑓𝑛′𝑙′𝑗′ , is obtained from a function 𝑓𝑛𝑙𝑗 constructed previously 
by multiplying it by 𝑟𝑙′−𝑙 sin(𝑘𝑟). Here, 𝑙′ and 𝑙 are the orbital quan-
tum numbers of the new and old orbitals (𝑙′ ≥ 𝑙) and the coefficient 𝑘
is determined by the properties of the radial grid. The small component 
𝑔𝑛′𝑙′𝑗′ is found from the kinetic balance condition:

𝑔𝑛′𝑙′𝑗′ =
𝝈𝐩 
2𝑚𝑐

𝑓𝑛′𝑙′𝑗′ , (10)

where 𝝈 are the Pauli matrices, 𝐩 and 𝑚 are the electron momentum 
and mass, and 𝑐 is the speed of light. The newly constructed functions 
are then orthonormalized to the functions of the same symmetry.

Another option is to construct large components of the orbitals from 
B-splines. Small components are still formed with the kinetic balance 
method. A more detailed description of this program is given in Ref. [3].

4.3. Configuration interaction

The CI method is realized collectively by three programs: add,
pbasc, and pconf. We begin with add, which constructs a CI space 
defined by a list of relativistic configurations generated by allowing ex-
citations from a set of reference configurations to any orbital in the basis 
set constructed in the previous section. The pbasc program acts as a pre-
cursor to pconf, calculating and storing the radial integrals required to 
construct the Hamiltonian matrix in the CI space. The pconf program 
constructs the Hamiltonian matrix, then diagonalizes it to find low-lying 
energies and eigenvectors.

4.3.1. add
The add program constructs a list of configurations to define the CI 

space by exciting electrons from a set of reference configurations to a set 
of active nonrelativistic shells. It takes in the input file ADD.INP, which 
specifies the reference configurations, active nonrelativistic shells, and 
minimum and maximum occupation numbers for each shell. As output, 
it writes the file CONF.INP, which includes a list of user-definable pa-
rameters and a list of relativistic configurations. A sample ADD.INP file 
is displayed in Fig. 2 for constructing a list of even-parity configura-
tions for Fe16+. A description of each parameter is defined after the “#” 
symbol. A more detailed description of this program is given in Ref. [3].

4.3.2. pbasc
After creating the configuration list, we pre-calculate the one- and 

two-electron radial integrals using the parallel program pbasc. These 
integrals are used by the proceeding parallel program pconf to form 
the Hamiltonian matrix in the CI space. The one-electron radial inte-
grals correspond to the DF potential of the core, and the two-electron 
radial integrals account for the Coulomb, and optionally, Breit interac-
tion between the valence electrons. The matrix elements of the Coulomb 
interaction for the multipolarity 𝑘 can be written as

⟨𝑐𝑑|𝑉 𝑘
𝑞
|𝑎𝑏⟩ ≡𝐺𝑘

𝑞
(𝑐𝑎)𝐺𝑘

𝑞
(𝑏𝑑)𝑅𝑘

𝑎𝑏𝑐𝑑
, (11)

where 𝐺𝑘
𝑞
(𝑓𝑖) are angular factors, or relativistic Gaunt coefficients, 

given by

𝐺𝑘
𝑞
(𝑓𝑖) = (−1)𝑚𝑓+1∕2𝛿𝑝

√
(2𝑗𝑖 + 1)(2𝑗𝑓 + 1)

×
(

𝑗𝑓 𝑗𝑖 𝑘

−𝑚𝑓 𝑚𝑖 𝑞

)(
𝑗𝑓 𝑗𝑖 𝑘

1∕2 −1∕2 0

)
, (12)

𝑅𝑘
𝑎𝑏𝑐𝑑

are the relativistic Coulomb radial integrals, and 𝛿𝑝 accounts for 
the parity selection rule

𝛿𝑝 = 𝜉(𝑙𝑖 + 𝑙𝑓 + 𝑘), 𝜉(𝑛) =

{
1 if 𝑛 is even,
0 if 𝑛 is odd. (13)

The Breit interaction has the same form as the Coulomb interaction, 
but without the parity selection rule.

The pbasc program reads the files HFD.DAT and CONF.INP to de-
termine which radial integrals are needed. These integrals are calculated 
and written to the file CONF.INT. The relativistic Gaunt coefficients are 
written to the file CONF.GNT, and the file CONF.DAT is also formed, 
storing the basis radial orbitals 𝜙𝑛𝑙𝑗 , as well as functions 𝜒𝑛𝑙𝑗 = ℎCI

𝑖
𝜙𝑛𝑙𝑗 .

4.3.3. pconf
The parallel program pconf performs the configuration interaction 

method in the CI space defined by the list of configurations contained 
in the CONF.INP input file created by the add program. It takes the
CONF.DAT, CONF.GNT, CONF.INT, and CONF.INP files as input. Op-
tionally, pconf can also take in the SGC.CON and SCRC.CON files, 
which contain one- and two-electron effective radial integrals. These 
files are created from supplementary programs that include additional 
second-order or all-order corrections. The inclusion of QED corrections 
also utilizes these optional files. To run the program, we must first cre-
ate the input file ci.in, which contains a list of key-value pairs defining 
the CI computation:

# ci.in
Kl = (0 , 1 , 2 , 3)
Ksig = (0 , 1 , 2)
Kdsig = (0 , 1)
Kw = (0 , 1)
KLSJ = (0 , 1)

The value of Kl can take the following values:

• 0 - start a new CI calculation
• 1 - continue the CI calculation (requires Kw=1)
• 2 - start a new CI calculation, including corrections from MBPT/all-

order/QED, etc.
• 3 - continue a CI calculation, including more configurations (re-

quires Kw=1)

Note that for Kl=1,3 to work, the file CONFp.HIJ must have been 
successfully written with Kw=1 in the original run. CONFp.HIJ stores 
a previously constructed Hamiltonian matrix, which must be read to 
continue a CI calculation. However, this file can be as big as 1 TB or 
more for large systems, so it should not be used unless the user has an 
exceptionally large amount of available computational resources.

The value of Ksig can take the following values:

• 0 - pure CI
• 1 - include one-electron corrections
• 2 - include one- and two-electron corrections

The value of Kdsig can take the following values:

• 0 - automatic approximation of the energy dependence of the op-
erator Σ(𝐸)

• 1 - manually specify the energy 𝐸val to treat the energy dependence 
of Σ(𝐸)

The value of Kw can take the following values:

• 0 - do not write the files CONFp.HIJ and CONFp.JJJ

• 1 - write the files CONFp.HIJ and CONFp.JJJ

The value of KLSJ can take the following values:
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# ADD.INP
Ncor= 2 # number of reference configurations
NsvNR 49 # number of allowed orbitals
mult= 2 # multiplicity of excitations
NE = 8 # number of valence electrons

L: 2s2 2p6 # reference configuration #1
L: 2s2 2p5 3p1 # reference configuration #2

2s 0 2 2p 0 6 3s 0 2 3p 0 6 3d 0 6 4s 0 2

4p 0 6 4d 0 6 4f 0 6 5g 0 6 5s 0 2 5p 0 6

5d 0 6 5f 0 6 6s 0 2 6p 0 6 6d 0 6 6f 0 6

6g 0 6 7s 0 2 7p 0 6 7d 0 6 7f 0 6 7g 0 6

8s 0 2 8p 0 2 8d 0 2 8f 0 2 8g 0 2 9s 0 2

9p 0 2 9d 0 2 9f 0 2 9g 0 2 10s 0 2 10p 0 2

10d 0 2 10f 0 2 10g 0 2 11s 0 2 11p 0 2 11d 0 2

11f 0 2 11g 0 2 12s 0 2 12p 0 2 12d 0 2 12f 0 2

12g 0 2 13s 0 2 13p 0 2 13d 0 2 13f 0 2 13g 0 2

14s 0 2 14p 0 2 14d 0 2 14f 0 2 14g 0 2 15s 0 2

15p 0 2 15d 0 2 15f 0 2 15g 0 2 16s 0 2 16p 0 2

16d 0 2 16f 0 2 16g 0 2 17s 0 2 17p 0 2 17d 0 2

17f 0 2 17g 0 2 18~s 0 2 18p 0 2 18d 0 2 18f 0 2

18g 0 2 19s 0 2 19p 0 2 19d 0 2 19f 0 2 19g 0 2

20s 0 2 20p 0 2 20d 0 2 20f 0 2 20g 0 2 21s 0 2

21p 0 2 21d 0 2 21f 0 2 21g 0 2 22s 0 2 22p 0 2

22d 0 2 22f 0 2 22g 0 2 23s 0 2 23p 0 2 23d 0 2

23f 0 2 23g 0 2 24s 0 2 24p 0 2 24d 0 2 24f 0 2

24g 0 2

> > > > > > > > > > > > > Head of the file CONF.INP > > > > > > > > > > > > > > > > > > > > > > > >
Fe16+_even

Z = 26.0 # atomic number
Am = 56.0 # atomic mass
J = 0 # total angular momentum

Jm = 0 # total angular momentum projection
Nso= 1 # number of core shells
Nc = 10 # number of configurations (placeholder)
Kv = 4 # key for diagonalization
Nlv= 5 # number of energy levels to compute
Ne = 8 # number of valence electrons
Kl4= 1 # key for initial approximation of eigenvectors
Nc4=999 # number of conf -s for initial approximation
Crt4= 0.0001 # convergence criterion for Davidson procedure
kout= 0 # key defining amount of output detail
Ncpt= 0 # number of conf -s to include in PT space
Cut0= 0.0001 # cutoff criterion for PT configurations
N_it= 50 # number of Davidson iterations
Kbrt= 2 # key for Breit interaction

0.1002 # list of core shells
==================================================================

Fig. 2. Contents of ADD.INP for even-parity configurations of Fe16+. Parameters of the CONF.INP input file are defined in the comments to the right. Refer to 
Ref. [3] for more details on the parameters.

• 0 - do not calculate ⟨𝑆2⟩, ⟨𝐿2⟩, or form approximate term symbols 
for each energy level

• 1 - calculate ⟨𝑆2⟩, ⟨𝐿2⟩, and form approximate atomic term sym-
bols for each energy level

After reading the keys from ci.in, the pconf program reads the 
general parameters and the list of configurations from the CONF.INP

file. Next, information about the basis set is read from CONF.DAT, an-
gular factors are read from CONF.GNT, radial integrals are read from
CONF.INT, and optionally, effective radial integrals are read from
SGC.CON and SCRC.CON.

Having read all required input files, the pconf program expands the 
list of relativistic configurations into a list of determinants, and writes 
them to the file CONF.DET. With the list of determinants, it forms the 
Hamiltonian matrix and then the matrix of the operator 𝐽 2 . The con-
struction of the Hamiltonian matrix is the most time-consuming part of 

the pconf program. A detailed description of the Hamiltonian matrix 
construction and its MPI implementation can be found in Ref. [2].

After the matrices are constructed, the pconf program enters the 
Davidson iterative procedure, where the Hamiltonian is diagonalized to 
obtain the specified number of low-lying energy eigenvalues and eigen-
vectors. The progress of the Davidson iterative procedure is written in 
the CONF.PRG file at each iteration. At selected intervals before the fi-
nal iteration, the eigenvalues and eigenvectors are saved to CONF.XIJ. 
Each time CONF.XIJ is written on disk, a table of the energy levels is 
appended to the file CONF.ENG, and tables of the top contributing con-
figurations for each level are appended to the file CONF.LVL.

Once the Davidson iterative procedure has converged, the final 
eigenvalues and eigenvectors are saved to CONF.XIJ, the final en-
ergy table is saved to FINAL.RES, the final list of the top contributing 
configurations for each level is saved to LEVELS.RES, and the con-
figurations along with their atomic term symbol, is written to the file
CONFSTR.RES.
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If polarizability calculations are required, the Hamiltonian matrix 
elements will have to be written to the file CONFp.HIJ by setting the 
key Kw=1 in ci.in. Note that depending on the size of the Hamiltonian, 
this file could take up hundreds of GB to over 1 TB. By default, Kw=0 is 
set to not write the Hamiltonian to disk. As a reference, polarizability 
calculations have typically been done with Hamiltonian sizes of up to 4 
million determinants.

4.4. Matrix elements

4.4.1. pdtm
The pdtm program calculates the matrix elements of one-electron op-

erators between many-electron states, under the density (or transition) 
matrix formalism. This formalism allows us to express the matrix ele-
ments between many-electron states via one-electron matrix elements. 
The pdtm program forms these reduced density (or transition) matrices 
and calculates the reduced matrix elements. The following quantities 
can be calculated from this program:

• electron 𝑔-factors
• magnetic dipole and electric quadrupole hyperfine structure con-

stants 𝐴 and 𝐵
• electric 𝐸𝑘 and magnetic 𝑀𝑘 multipole transition amplitudes, 

where 𝑘 = 1,2,3 corresponds to the dipole, quadrupole, and oc-
tupole transitions

• nuclear spin independent parity nonconserving (PNC) amplitude
• amplitude of the electron interaction with the P-odd nuclear 

anapole moment (AM)
• P, T-odd interaction of the electron electric dipole moment
• amplitude of the electron interaction with the P, T-odd nuclear mag-

netic quadrupole moment

The pdtm program takes in the input file dtm.in, which defines the 
parameters of the matrix element computation:

Mode = (DM , TM , Init)
Levels = level_range (level_range_1)
Operators = (E1 , M2 , ...) (optional)

The value of Mode can take the following values:

• DM - form density matrix and calculate diagonal matrix elements
• TM - form transition matrix and calculate non-diagonal matrix ele-

ments
• Init - create the file DTM.INT, which contains radial integrals for 

all operators

The value of Levels takes in a range of levels depending on whether
Mode was specified as DM or TM:

• DM
– initial_level final_level

• TM
– initial_level final_level initial_level_1 final_ 
level_1

This can be left empty for the case of Mode = Init, where only 
the DTM.INT file needs to be written. The initial_level and fi-
nal_level correspond to the levels written to CONF.XIJ, while those 
with “_1” correspond to levels in CONF1.XIJ.

The value of Operators takes in a list of operators to create addi-
tional files summarizing the results in a table:

• DM
– GF, A_hf, B_hf

• TM

– E1, E2, E3, M1, M2, M3, EDM, PNC, AM, MQM

Note that this key is optional and unnecessary for the core functionality 
of pdtm. A table with the results for all calculated observables is written 
to the files DM.RES or TM.RES, regardless.

This program begins by reading the file CONF.INP for the system 
parameters and the list of configurations. Then, the basis radial orbitals 
are read from the file CONF.DAT, and radial integrals for all operators 
are calculated and written to the file DTM.INT. If this file already exists,
pdtm uses it and does not recalculate the radial integrals. If Mode = 
Init, the file DTM.INT will be reconstructed regardless of whether or 
not the file already exists.

For diagonal matrix elements, the list of determinants and eigen-
vectors corresponding to the state of interest is read from the files
CONF.DET and CONF.XIJ, respectively. For the non-diagonal matrix el-
ements, the initial state is read from the file CONF.DET and CONF.XIJ, 
and the final state is read from the files CONF1.DET and CONF1.XIJ. 
The results of the diagonal and non-diagonal matrix elements are written 
to the files DM.RES and TM.RES, respectively. Note that from Eq. (8), 
for 𝑀 ′ =𝑀 = 0, the respective 3𝑗-symbol, and thus the reduced transi-
tion matrix, turns to zero if (𝐽 ′ + 𝐿 + 𝐽 ) is odd. To avoid such prob-
lems, one should use Jm ≠ 0 for at least one of the states |𝐽𝑀⟩ or |𝐽 ′𝑀 ′⟩.
4.4.2. pol

The pol program calculates the dc and ac polarizabilities of the spec-
ified atomic states. The expression for electric-dipole ac polarizability at 
the frequency 𝜔 of the state |𝐽𝑀⟩ can be written (in a.u.) as a sum over 
unperturbed intermediate states 𝑛,

𝛼(𝜔) = 2
∑
𝑛 

(𝐸𝑛 −𝐸)|⟨𝐽𝑀|𝐷𝑧|𝑛⟩|2
(𝐸𝑛 −𝐸)2 −𝜔2 , (14)

where 𝐃 is an electric dipole moment operator and 𝐸 and 𝐸𝑛 are the 
energies of the initial and intermediate states, respectively.

To find 𝛼, we can rewrite Eq. (14) as

𝛼(𝜔) =
∑
𝑛 
⟨𝐽𝑀|𝐷𝑧|𝑛⟩ ⟨𝑛|𝐷𝑧|𝐽𝑀⟩

×
[

1 
𝐸𝑛 −𝐸 +𝜔

+ 1 
𝐸𝑛 −𝐸 −𝜔

]
. (15)

Then we use the Sternheimer [58] or Dalgarno-Lewis [59] method 
and solve the inhomogeneous equations

(𝐻 −𝐸 ±𝜔) |𝛿𝜙±⟩ =𝐷𝑧 |𝐽𝑀⟩, (16)

to find |𝛿𝜙±⟩,
|𝛿𝜙±⟩ = 1 

𝐻 −𝐸 ±𝜔
𝐷𝑧|𝐽𝑀⟩

=
∑
𝑛 

1 
𝐻 −𝐸 ±𝜔

|𝑛⟩⟨𝑛|𝐷𝑧|𝐽𝑀⟩ (17)

where 𝐻 is the Hamiltonian and we used the closure relation 
∑

𝑛 |𝑛⟩⟨𝑛| =
1. After that, the polarizability can be found as the sum of two matrix 
elements

𝛼(𝜔) = ⟨𝐽𝑀|𝐷𝑧|𝛿𝜙+⟩+ ⟨𝐽𝑀|𝐷𝑧|𝛿𝜙−⟩. (18)

If electrons in an atomic system are divided into valence and core 
electrons, the polarizability can be divided accordingly as

𝛼 ≡ 𝛼𝑣 + 𝛼𝑐,

where 𝛼𝑣 and 𝛼𝑐 are the valence and core contributions.
The pol program calculates only the valence polarizability 𝛼𝑣 . The 

core polarizability needs to be computed separately with a different pro-
gram.
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Table 2
Results of a scalability test done using a 30-electron CI calculation using an 8𝑠𝑝𝑑𝑓𝑔 basis set for the energies of 
Ir17+ [4]. The number of nodes, cores and the amount of memory per core (in GiB) is displayed in the column 
“Computational Resources”. The execution time for the construction of the Hamiltonian matrix (Construct), 
the Davidson iterative procedure (Davidson), and the total execution time (Total) are listed in the column 
“Time”. The speedup achieved for each parallel run is displayed in the column “Speedup”, and is calculated 
from the base 1-node, 64-core run. Note that this calculation took about 2 weeks of execution time using the 
serial code [3,4].

Computational Resources Time Speedup 
nodes cores mem_per_core (GiB) Construct Davidson Total Construct Davidson Total 
1 64 9.1 4 h 32 m 28 m 56 s 5 h 3 m - - -
2 128 5.5 2 h 15 m 16 m 27 s 2 h 32 m 2.02 1.76 1.98 
4 256 3.7 1 h 7 m 9 m 57 s 1 h 18 m 4.05 2.91 3.84 
8 512 2.8 33 m 27 s 6 m 18 s 41 m 31 s 8.13 4.59 7.30 
16 1024 2.4 16 m 41 s 4 m 33 s 23 m 3 s 16.29 6.36 13.14 
32 2048 2.1 8 m 21 s 4 m 2 s 14 m 57 s 32.55 7.17 20.26 

Disregarding the vector polarizability, we can present the expression 
for 𝛼(𝜔) as the sum of the scalar and tensor parts,

𝛼(𝜔) = 𝛼0 + 𝛼2
3𝑀2 − 𝐽 (𝐽 + 1)

𝐽 (2𝐽 − 1) 
. (19)

The pol program gives both the scalar and tensor polarizabilities if the 
latter is not zero.

This program requires several input files from previously run pconf
and pdtm programs, including CONF.DET and CONF.XIJ of the par-
ity of the level of interest (renamed to CONF0.DET and CONF0.XIJ),
CONF.INP, CONF.XIJ, CONF.HIJ, and CONF.JJJ of the opposite par-
ity, and the file DTM.INT from pdtm.

Note that the pconf program outputs CONFp.HIJ and CONFp.JJJ
files, but not the CONF.HIJ and CONF.JJJ files. The only difference 
between these files is that the former are not sorted and require the 
additional sort program to process them in the latter.

The pol program requires a list of key-value parameters in a file
pol.in:

Mode = (0 , 1)
Method = (0 , 1 , 2)
Level = (energy level index)
Ranges = (list of ranges of wavelengths)
IP1 = (dimension of initial matrix)

The value of Mode can take the following values:

• 0 - start a new calculation
• 1 - continue the calculation

The value of Method can take the following values:

• 0 - invert the matrix and iterate if diverged
• 1 - only invert the matrix
• 2 - modified iteration procedure where computation restarts af-

ter every 2 iterations while retaining vectors (used in cases where
Method=0 diverges)

The value of Level is the ordinal number of the vector in the
CONF0.XIJ file corresponding to the energy level for which the user 
wants to calculate the polarizability. The Ranges field takes in a list of 
wavelength ranges with step size in the format (initial_wavelength 
final_wavelength step_size), separated by commas. For exam-
ple, the range “0 0 0” corresponds to calculations of dc polarizabilities, 
while “500 505 0.5” tells pol to calculate ac polarizabilities from 
𝜆 = 500 nm to 𝜆 = 505 nm in steps of 0.5 nm. The value of IP1 sets the 
dimension of the initial approximation of the matrix (by default, this is 
set to IP1=15000).

An example of running the program pol is given in Sec. 8.

5. Scalability and efficiency of parallel codes

Large-scale CI calculations are typically run on large computing 
clusters with large amounts of processors and memory. The parallel 
programs contained in the pCI software package utilize MPI to mas-
sively parallelize their most time-consuming algorithms. MPI allows for 
scalable parallelism over many distributed computing nodes in modern 
parallel computing architectures. Details of the new algorithms used in 
the pCI package over the previous CI-MBPT package can be found in 
Ref. [2]. In summary, the parallel codes utilize dynamic memory allo-
cations to optimize the memory footprint and dynamic load-balancing 
to optimize heavy workload calculations.

To demonstrate the scalability and efficiency of the parallel codes, 
we conducted a scalability test using up to 32 nodes and 2048 computing 
cores on the University of Delaware DARWIN computing cluster. As a 
test case, we used a prior 30-electron CI calculation for low-lying Ir17+
energy levels. Details of this calculation can be found in Ref. [4]. We 
used a short 8𝑠𝑝𝑑𝑓𝑔 basis set and included 24 895 relativistic configura-
tions (17 431 323 determinants) in the CI space. The Hamiltonian matrix 
contained about 27.76×109 nonzero matrix elements, which were stored 
in approximately 413.6 GiB of memory.

The results of the scalability test are shown in Table 2. They are 
obtained from timing the main code sections in the program pconf: 
the construction of the Hamiltonian and its diagonalization. We find 
a perfect linear speedup with the number of nodes and cores for the 
construction of the Hamiltonian matrix. However, the matrix diago-
nalization does not perform as well because the Davidson procedure 
is iterative and has much more serial overhead. When many more cores 
take part in the calculation, the communication overhead also becomes 
considerable and contributes to the lackluster speedup. However, de-
spite the poor parallelism of the Davidson diagonalization procedure, 
the total speedup drops to around 90% when running with 8 nodes and 
to around 80% with 16 nodes. We find similar scalability in the other 
parallel programs pbasc and pdtm.

Large-scale runs are typically done with less than 16 nodes due to 
prohibitive memory requirements caused by the size of the CI space. 
Note that scalability and efficiency depend highly on the number of 
Davidson iterations required to obtain the convergence of the en-
ergy levels. The construction of the Hamiltonian matrix does not af-
fect the scalability as much, due to the implemented dynamic load-
balancing scheme [2]. We find that calculations where matrix construc-
tion dominates are more scalable than those where diagonalization dom-
inates. Further work on the implemented matrix diagonalization scheme 
has to be done to achieve a perfect linear speedup for higher node 
counts for diagonalization-dominated calculations. Matrix-construction-
dominated calculations are expected to perform well for a much higher 
number of cores but need to be tested on larger computational resource 
centers.

Computer Physics Communications 308 (2025) 109463 

9 



C. Cheung, M.G. Kozlov, S.G. Porsev et al. 

Table 3
Odd-parity energies of Fe16+ calculated with a small 12𝑠𝑝𝑑𝑓𝑔 basis set for the first 
5 levels with 𝐽 = 1. Energies are calculated from the even-parity 2𝑠22𝑝6 ground 
state. The results are compared with experiment from Ref. [17] and Ref. [60]. All 
energies are given in cm−1.

Configuration 12𝑠𝑝𝑑𝑓𝑔 Expt. [17] Diff. [17] Expt. [60] Diff. [60] 
2𝑠22𝑝53𝑠 3𝑃1 5860927 5864239 0.05% 5864502 0.05% 
2𝑠22𝑝53𝑠 1𝑃1 5956909 5960977 0.06% 5960742 0.06% 
2𝑠22𝑝53𝑑 3𝑃1 6468748 - - 6471640 0.03% 
2𝑠22𝑝53𝑑 3𝐷1 6550091 6552585 0.03% 6552503 0.03% 
2𝑠22𝑝53𝑑 1𝑃1 6658398 6661091 0.03% 6660770 0.03% 

6. Calculation of Fe𝟏𝟔+ energies and 3C/3D ratio

In this section, we showcase a sample workflow of the pCI software 
package, calculating the energies and 3C/3D oscillator strength ratios in 
Fe16+ [16,17]. This method described here has also been used for cal-
culations for other highly charged ions, such as Ni18+ [18]. Additional 
examples are available on the documentation website. By the end of this 
example, we will have our results organized in the following sample file 
directory:

Fe16+

/basis - contains basis set files
/dtm - contains matrix element files
/even - contains even -parity CI files
/odd - contains odd -parity CI files

6.1. Construction of basis set

We begin the construction of the basis set for Fe16+ by first construct-
ing the core and valence orbitals from solutions of the HFD equations 
using the hfd program, and then running the bass program to form 
virtual orbitals to account for correlations. Following Ref [16], we con-
struct a 24𝑠𝑝𝑑𝑓𝑔 basis set, where the designation 24𝑠𝑝𝑑𝑓𝑔 means that 
all orbitals up to 𝑛 = 24 are included for the 𝑠𝑝𝑑𝑓𝑔 partial waves. Here, 
the 1𝑠, 2𝑠, 3𝑠, 3𝑝, 4𝑠, 4𝑝, 4𝑑, 4𝑓 , and 5𝑔 orbitals are constructed as DF 
orbitals, while all others in the basis set are constructed in the usual way 
using bass following Refs. [57,3]. A detailed description of the basis set 
construction can be found in the Fe16+ example page on the documenta-
tion website: https://pci.readthedocs.io/en/latest/examples/hci.html. 
This program outputs the final basis set to the HFD.DAT file, which will 
be used for all the following programs. At this point, the HFD.DAT file 
should be copied or symlinked to the dtm, even, and odd directories.

6.2. Calculation of energy levels

Before we can run the CI calculations, we must first construct an 
even-parity and an odd-parity list of configurations that define the CI 
space for the pconf program. This is done using the add program with 
the ADD.INP input file for each parity, in their respective /even and
/odd directories. Fig. 2 displays a sample even-parity ADD.INP file.

Here, we keep the 1𝑠 shell closed and allow all single and double 
excitations from the 8 valence electrons from the 2 reference configu-
rations 2𝑠22𝑝6 and 2𝑠22𝑝53𝑝, to the 109 orbitals listed, up to 24𝑠𝑝𝑑𝑓𝑔. 
From here on, we omit 1𝑠2 from configuration designations for brevity. 
An equivalent odd-parity ADD.INP file would have the same content, 
with the reference configurations 2𝑠22𝑝53𝑠, 2𝑠22𝑝53𝑑 and 2𝑠2𝑝63𝑝, and 
the value of Ncor set to 3. Also note that the 3C and 3D lines are both 
𝐽 = 1→ 0 transitions, specifically transitions from the 4th and 5th low-
est odd-parity 𝐽 = 1 states to the ground 𝐽 = 0 state. To minimize the 
use of computational resources, we can specify J=1, Jm=1, Nlv=5, and
Kv=3 to only compute the 5 lowest energy levels with 𝐽 = 1. These 
changes can either be made in the CONF.INP file, or at the bottom of 
the ADD.INP file. Alternatively, if enough computational resources are 

available, one can allow J=0, Jm=0, Nlv=16, and Kv=4, to calculate 
the lowest 16 energy levels with any allowed value of 𝐽 . The next step 
is to run the sequence of programs pbasc and pconf in the respective 
even- and odd-parity directories. These are both parallel programs, so 
they have to be executed using the commands

mpirun -n <nprocs > <executable >

where <nprocs> specifies the number of MPI processes to use, and
<executable> is the program, pbasc or pconf, to run. The pconf
program outputs the basis set of determinants to the CONF.DET file and 
the wave functions to the CONF.XIJ file, which will be copied to the
/dtm directory to be used for matrix element calculations using the
pdtm program.

The final energies are tabulated in the files CONF.RES and FI-
NAL.RES. We present the results of the pconf program for the first 5 
odd-parity levels with 𝐽 = 1 in Table 3. Our results are compared with 
experimental values from Ref. [17] and Ref. [60]. Note that the sample 
calculation is done with a very small basis set of 12𝑠𝑝𝑑𝑓𝑔. Higher accu-
racy at the level of 0.001% as in Ref. [17] can be attained by reaching 
basis set convergence by re-running the computations with larger basis 
sets until energy differences are small. Other corrections include increas-
ing the number of reference configurations, adding triple excitations, as 
well as including QED contributions [17].

6.3. Calculation of 3C/3D ratio

In this section, we are interested in computing the oscillator strength 
ratio of two of the brightest lines in Fe16+, subject of a long-standing 
astrophysics puzzle that has recently been resolved [16]. In particu-
lar, we want to calculate the ratios of the oscillator strengths of the 
3C [2𝑝6 1𝑆0 − 2𝑝53𝑑 1𝑃1] and 3D [2𝑝6 1𝑆0 − 2𝑝53𝑑 3𝐷1] lines.

Before calculating the matrix elements, we have to copy or symlink 
the even-parity CONF.INP, CONF.DAT, CONF.DET, and CONF.XIJ files 
as-is from the /even directory to the /dtm directory. From the /odd
directory, we copy the CONF.DET and CONF.XIJ files to the /dtm di-
rectory, renaming them to CONF1.DET and CONF1.XIJ, respectively.

The pdtm program takes in the input file dtm.in, where we can 
specify the parameters of the matrix element calculations.

# dtm.in
Mode = TM
Levels = 1 1 , 4 5
Operators = E1

Here the first line Mode = TM indicates calculations of transition matrix 
elements. The second line tells the program to include the first en-
ergy level (1 1) from CONF.XIJ, and the fourth and fifth energy levels 
(4 5) from CONF1.XIJ. The third line creates an additional output file
E1.RES with a summary of the resulting 𝐸1 matrix elements.

The pdtm tabulates the 𝐸1 reduced matrix elements to the file
E1.RES. Here, we obtain the reduced matrix elements 𝐷(3D) = 0.17881
and 𝐷(3C) = 0.33539. We can then compute the 3C/3D oscillator 
strength ratio
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𝑅(3C∕3D) =
(
𝐷(3C) 
𝐷(3D)

)2
× Δ𝐸(3C) 
Δ𝐸(3D)

where Δ𝐸 are the transition energies of the respective lines, to be 3.576. 
Despite using a small 12𝑠𝑝𝑑𝑓𝑔 basis set, we find that our value agrees 
with recent experimental value of 3.51(2)stat (7)sys [16]. A more accurate 
ratio can be obtained from advanced techniques described at the end of 
the previous section.

7. pCI-py scripts

In addition to the source codes distributed in the pCI package, we 
also include additional Python helper scripts to automate the entire 
computational workflow of pCI. These were written to improve the re-
producibility of the results for the computations performed, as well as to 
make the overall pCI package more user-friendly. The included pCI-py 
scripts also serve as a template for more complex calculations, allowing 
users to customize them to fit their desired type of calculations. The in-
cluded scripts require Python v3.x, and depend on a single user-defined 
YAML configuration file config.yml.

Users can set the parameters defining their system of interest in con-
fig.yml, and run the various scripts to automate the respective pCI 
workflows. As an example, we will use a config.yml file used for au-
tomated computations of neutral Sr. The results of these calculations 
are used to provide data for the University of Delaware Portal for High-
Precision Atomic Data and Computation. Refer to the pCI Read the Docs 
for the latest documentation and changes for these scripts.

The main scripts include:

1. basis.py - runs hfd and bass, and optionally, the CI + MBPT or 
CI + all-order programs.

2. ci.py - runs add, pbasc and pconf.
3. dtm.py - runs pdtm, and optionally, the programs to include the 

random phase approximation (RPA) correction to the matrix ele-
ments.

4. pol.py - runs sort and pol

There are also supplementary scripts that go beyond the scope of the 
pCI software package, including:

1. upscale.py - upscales the CI computation from a specified 𝑛𝑙 ba-
sis to a larger 𝑛′𝑙′ basis. Details of the logic of this script can be 
found in Appendix B.

2. isotope_shifts.py - automates isotope shift (IS) calculations 
from an already completed non-IS calculation.

3. gen_portal_csv.py - compares results of CI computations to 
data from the NIST database, writing csv-formatted files.

4. calc_lifetimes.py - generates csv-formatted data files of life-
times and transition rates from output of gen_portal_csv.py

7.1. config.yml

The config.yml file is a YAML-formatted configuration file that 
defines important parameters of the atomic system of interest. This con-
figuration file is divided into several blocks:

• system parameters
• HPC parameters
• atom and method parameters
• parameters used by basis programs (only read by basis.py)
• parameters used by ci programs (only read by ci.py)
• parameters used by matrix element programs (only read by dtm.py)
• parameters used by polarizability programs (only read by pol.py)
• optional parameters defining types of calculations

The system parameters are in the system block and is read by all 
Python scripts:

system:
bin_directory: ""
generate_directories: True
run_codes: True
on_hpc: True
pci_version: default

The fields

• system.bin_directory specifies a path to a directory of pCI 
executable programs. If left blank, it is assumed the directories to 
the executable programs are in the user’s environment PATH.

• system.generate_directories specifies whether or not to 
generate directories for calculations.

• system.run_codes specifies whether or not the pCI programs 
should be run during the Python script execution. If set to False, 
the scripts will only generate the input files for the respective pro-
grams.

• system.on_hpc specifies whether the user is running on an HPC 
environment. Setting this to True will create scripts that are sub-
mitted to the job scheduler (this is only compatible with the SLURM 
workload manager).

• system.pci_version specifies which version of pCI to use from 
the HPC environment (this is relevant only for job scripts on HPC).

The HPC parameters are in the hpc block and is read by all scripts 
if system.on_hpc is set True:

hpc:
partition: large -mem
nodes: 1
tasks_per_node: 64
submit_job: False

The fields

• hpc.partition specifies the name of the partition.
• nodes specifies the number of nodes.
• tasks_per_node specifies the number of tasks per node.
• submit_job specifies whether to submit the batch job or not.

The job scripts generated by the included Python scripts are based on the 
SLURM workload manager. Users can customize the gen_job_script. 
py script to suit their system.

The atom parameters are in the atom block and is read by all scripts:

atom:
name: Sr
isotope:
include_breit: True
code_method: [ci+all -order , ci+second -order]

The fields

• atom.name specifies the name of the atomic system of interest.
• atom.isotope specifies the isotope number. If the isotope is spec-

ified, the script will use the radius from the nuclear charge radii 
table of Ref. [61]. If the specified isotope number is not found in 
Ref. [61], or if this field is left blank, the radius of the isotope with 
mass closest to the standard atomic weight is used. This feature re-
quires the atom.name field to contain a valid atomic symbol.

• atom.include_breit specifies whether or not to include the 
Breit interaction in calculations. This should be True or False.

• atom.code_method specifies the calculation method to utilize. 
Available options are ci, ci+all-order, and ci+second-
order for pure CI, CI + all-order, and CI + MBPT, respectively. Users 
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can input [ci+all-order, ci+second-order] to run both 
CI + all-order and CI + MBPT calculations concurrently.

7.2. basis.py

The basis.py script automates the basis set construction for the 
CI computations, which is described in detail in Sec. 4.2. By running 
the script, the basis set programs are run, resulting in HFD.DAT, which 
can be used by the next script for the CI calculations. In addition to the
system block, it also reads the basis block:

basis:
cavity_radius: 70
diagonalized: True
orbitals:

core: 1s 2s 2p 3s 3p 3d 4s 4p
valence: 5s 5p 4d 6s 6p 5d 7s 7p 6d
nmax: 35
lmax: 5

b_splines:
nmax: 40
lmax: 6
k: 7

val_aov:
s: 5
p: 5
d: 5
f: 3

val_energies:
kval: 1
energies:

s: -0.28000
p: [ -0.22000 , -0.22000]
d: [ -0.31000 , -0.31000]
f: [ -0.13000 , -0.13000]

where the fields

• basis.cavity_radius specifies the size of the spherical cavity 
in a.u.

• basis.diagonalized specifies whether to diagonalize the basis 
set or not.

• basis.orbitals specifies the core and valence orbitals to be in-
cluded in the basis. It also requires a maximum principal quantum 
number nmax and maximum partial wave lmax for basis set orbital 
generation.

• basis.b_splines specifies the maximum principal quantum 
number nmax (number of splines), maximum partial wave lmax, 
and order of the splines k.

• basis.val_aov specifies the number of valence orbitals to in-
clude for each partial wave in the all-order computations.

• basis.val_energies specifies the energies of the valence or-
bitals. kval=1 is the default choice, where energies are set to the 
DHF energy of the lowest valence 𝑛 for the particular partial wave. 
In this case, the field energies can be safely ignored. kval=2
allows specified energies of the valence orbitals, but is only used 
when the all-order valence energies are severely divergent.

basis.py also reads the optional block:

optional:
qed:

include: False

isotope_shifts:
include: False

K_is: 1
C_is: 0.01

where the fields

• optional.qed block allows users to specify the inclusion of QED 
corrections (this requires the QED package included in the lib di-
rectory).

• optional.isotope_shifts block allows users to specify iso-
tope shift calculations by switching the include value to True
and specifying keys K_is and C_is. These keys are described in 
more detail in Appendix E.

The basis.py script also writes the standard output of the executa-
bles to their respective *.out files, e.g. hfd standard output is written 
to the file hfd.out.

7.3. ci.py

The ci.py script automates the CI method, which is described in 
detail in Sec. 4.3. It reads the add.py block for information about the 
configuration list:

add:
ref_configs:

odd: [5s1 5p1]
even: [5s2]

basis_set: 17spdfg
orbitals:

core: 1s 2s 2p 3s 3p 3d 4s 4p
active: [

4 -7p: 0 4 ,
4 -7d: 0 4 ,
4 -7f: 0 4 ,
5 -7g: 0 4 ,
]

excitations:
single: True
double: True
triple: False

where the fields

• add.ref_configs requires a list of reference configurations to 
excite electrons from to construct the list of configurations defin-
ing the CI space. The list will not be constructed if left blank for a 
specified parity.

• add.basis_set requires specification of the basis set designated 
by nspdfg, where n specifies the principal quantum number of the 
highest orbital allowed, and spdfg specifies the inclusion of the 
𝑠, 𝑝, 𝑑, 𝑓 , and 𝑔 orbitals. Higher partial waves can be included by 
appending to the end of the list h, i, k, etc.

• add.orbitals allows full customization of the allowed orbital oc-
cupancies. In the example, 4-7p: 0 4 defines the (4 − 7)𝑝 shells 
to be open up to 4 occupancies.

• add.excitations defines the types of excitations allowed by set-
ting the sub-fields to be True or False.

Then it reads the conf block for parameters defining the CI execu-
tion itself:

conf:
odd:

J: 1.0
JM: 1.0
J_selection: False
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num_energy_levels: 12
num_dvdsn_iterations: 50

even:
J: 0.0
JM: 0.0
J_selection: False
num_energy_levels: 24
num_dvdsn_iterations: 50

include_lsj: True
write_hij: True

where for each parity, the fields

• conf.parity.J defines the total angular momentum of the en-
ergy levels.

• conf.parity.JM defines the projection of the total angular mo-
mentum.

• conf.parity.J_selection defines whether to calculate energy 
levels of a specified 𝐽 defined by J and JM or not.

• conf.parity.num_energy_levels defines the number of en-
ergy levels to be calculated for the respective parity run.

• conf.parity.num_dvdsn_iterations defines the total num-
ber of Davidson iterations to allow for the respective parity run.

and in general, the fields

• conf.include_lsj defines whether the user wants the expecta-
tion values of the operators 𝐿2 and 𝑆2 to be calculated.

• conf.write_hij defines whether the user wants the Hamiltonian 
matrix to be written to the file CONFp.HIJ.

If system.generate_directories or system.run_codes is set to
True, the ci.py script will generate directories for the CI calculations 
based on the parity and 𝐽 value specified. In the sample provided above, 
the directories odd1 and even0 will be generated for odd-parity calcu-
lations for 𝐽 = 1 levels and even-parity calculations with 𝐽 = 0 levels, 
respectively.

7.4. dtm.py

The dtm.py script automates the matrix element calculations, which 
are described in detail in Sec. 4.4.1. Specifically, this script prepares 
directories for calculations with pdtm by moving the relevant input files 
from previous calculations to them. This script reads the dtm block:

dtm:
include_rpa: True
DM:

matrix_elements:
level_range:

odd:
even:

TM:
matrix_elements: E1
from:

parity: odd
level_range: 1 3

to:
parity: even
level_range: 1 1

where the fields

• dtm.include_rpa defines whether the user would like to include 
RPA corrections. Note that this option requires compilation of the
rpa and rpa-dtm programs.

• dtm.DM defines job parameters for density matrix (DM) calcula-
tions, while dtm.TM defines job parameters for transition matrix 
(TM) calculations.

• dtm.*.matrix_elements defines operators to include RPA if
include_rpa = True. This value can be a single matrix element 
or an array of matrix elements. In addition, a separate file *.RES
will be generated by pdtm for each operator listed here. For DM, 
the operators include: GF, A_hf and B_hf. For TM, the operators 
include: E1_L, E1_V, E1, E2, E3, M1, M2, M3, EDM, PNC, AM, MQM. 
To include multiple operators, list the operators in brackets, e.g. 
“[E1, M2]”.

• dtm.*.level_range defines the level ranges to calculate matrix 
elements. The indices of each energy level can be found in the 
file FINAL.RES or CONF.RES generated by the pconf program. 
DM calculations require one of the two parities (odd or even) 
to be filled with a level range. TM calculations require all fields
TM.from.* and TM.to.* to be filled with the respective parities, 
as well as the initial and final level ranges of the transitions.

7.5. pol.py

The pol.py script automates polarizability calculations, which are 
described in detail in Sec. 4.4.2. This script reads the pol block:

pol:
parity: even
level: 1
method: 1
field_type: static , dynamic
wavelength_range: 1000 1000
step_size: 0

where the fields

• pol.parity specifies the parity of the state to calculate polariz-
abilities for.

• pol.level specifies the index of the state to calculate polarizabil-
ities for.

• pol.method specifies the method to calculate polarizabilities. This 
field corresponds to the integer parameter Method described in 
Sec. 4.4.2.

• pol.field_type specifies calculations of static or dynamic po-
larizabilities. Calculations of both can be done by setting this field 
to [static, dynamic].

• pol.wavelength_range specifies the range of wavelengths to 
calculate dynamic polarizabilities for.

• pol.step_size specifies the step size of the range of wave-
lengths.

7.6. Running the pCI-py scripts

After configuring the config.yml file, running the CI computations 
becomes as simple as running 2 Python scripts: basis.py and ci.py. 
If matrix elements are required, then the additional dtm.py script can 
be run. If polarizabilities are required, then the pol.py script can be 
run as well.

Two sample config.yml files are included in the pCI software 
package. The config_Fe16+.yml automates the pure-CI method for 
the highly charged ion Fe16+, while the config_Sr.yml automates 
the CI + all-order and CI + second-order calculations to produce a large 
volume of atomic data used by the University of Delaware Portal for 
High-Precision Atomic Data and Computation.

8. Atomic properties of neutral Sr

In this section, we demonstrate the usage of the pCI-py scripts de-
scribed in the previous section to calculate energies, reduced 𝐸1 matrix 

Computer Physics Communications 308 (2025) 109463 

13 



C. Cheung, M.G. Kozlov, S.G. Porsev et al. 

Table 4
Comparison of the reduced electric-dipole matrix elements (in 
a.u.) obtained from pCI with previous theory [62] and experimen-
tal [63] values. The values displayed under “pCI” are obtained from 
the CI + all-order approach, with uncertainty calculated as the dif-
ference between CI + all-order and CI + MBPT values.

Transition pCI Theory [62] Expt. [63] 
3𝑃 𝑜

1 – 1𝑆0 0.155(4) 0.158 0.151(2) 
1𝑃 𝑜

1 – 1𝑆0 5.275(19) 5.272 5.248(2) 

elements, and static and dynamic polarizabilities of neutral Sr for the 
1𝑆0 state. Here, we will use the file config_Sr.yml sample configu-
ration file included in the pCI distribution, which is displayed in parts 
in Sec. 7.

We treat Sr as a divalent ion, constructing the basis set in the 𝑉 𝑁−2

approximation, where 𝑁 is the number of electrons. The basis.py
script will construct a basis set in both CI + all-order and CI + MBPT ap-
proximations, in their respective directories. Both are constructed as 
diagonalized basis sets in a spherical cavity radius of 70 a.u. The ini-
tial HFD self-consistency procedure is carried out for the core 1𝑠, 2𝑠, 2𝑝, 
3𝑠, 3𝑝, 3𝑑, 4𝑠, and 4𝑝 orbitals, and then the valence 5𝑠, 5𝑝, 4𝑑, 6𝑠, 6𝑝, 
5𝑑, 7𝑠, 7𝑝, and 6𝑑 orbitals are constructed in the frozen-core potential. 
The remaining virtual orbitals are formed using 40 B-spline orbitals of 
order 7, including partial waves up to 𝑙 = 5. The coupled-cluster equa-
tions are then solved to all-order and to second-order in the respective 
directories. This basis set is stored in the file HFD.DAT, while correc-
tions from all-order and MBPT are stored in the form of effective radial 
integrals in the files SGC.CON and SCRC.CON.

Next, the ci.py script generates lists of configurations by exciting 
electrons from the odd-parity 5𝑠5𝑝 and even-parity 5𝑠2 configurations to 
all orbitals up to 17𝑠𝑝𝑑𝑓𝑔, then run the CI computations. The energies 
and wave functions of the lowest 12 states with 𝐽 = 1 are calculated for 
the odd-parity CI run, and the lowest 24 with 𝐽 = 0 for the even-parity 
CI run.

The dtm.py script is then run to calculate 𝐸1 reduced matrix ele-
ments, including RPA corrections. In config_Sr.yml we specify tran-
sitions from the first 3 odd states to the first even state. We present the 
results of these computations for 3𝑃 𝑜

1 − 1𝑆0 and 1𝑃 𝑜
1 − 1𝑆0 in Table 4, 

and compare them with previous theory [62] and experimental [63] 
values.

Finally, the pol.py script is run to calculate dc and ac valence 
polarizabilities for the 1𝑆0 state. We present these results in Table 5, 
along with that of 3𝑃 𝑜

0 and the difference 𝛼(3𝑃 𝑜
0 ) − 𝛼(1𝑆0). These re-

sults are compared with previous theory results from Ref. [62], which 
uses the CI + all-order + RPA approach with a different basis set. Note 
that only the valence polarizabilities are compared, with core-core and 
core-valence contributions neglected. The final column displays ac po-
larizabilities for each state at 1000 nm. To calculate polarizabilities 
for the 3𝑃 𝑜

0 state, one has to set pol.parity to odd, then swap the 
values of conf.odd.J and conf.odd.JM with conf.even.J and
conf.even.JM. The ci.py script is re-run to calculate wave functions 
in the respective projections, and then pol.py is re-run to obtain po-
larizabilities.

As an extra test, one can calculate valence polarizabilities for the 3𝑃 𝑜
1

state by setting conf.odd.J and conf.odd.JM to 1, conf.even.J
and conf.even.JM to 0, and re-running pol.py. Doing so, we ob-
tain scalar polarizability 𝛼0(3𝑃1) = 194.84 a.u., vector polarizability 
𝛼2(3𝑃1) = 23.45 a.u., and total ac polarizability 𝛼(3𝑃1) = 218.29 a.u. at 
𝜆 = 1000 nm. Higher precision of the polarizabilities can be attained 
by including core polarizabilities, which are calculated with a different 
program not included in this work.
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Appendix A. CI + X extensions

The capabilities of the pCI software package can be extended to use 
the CI + all-order and CI + MBPT methods. The all-order and MBPT meth-
ods include corrections to the bare Hamiltonian due to core shells, which 
can then be accounted for in the CI. The pCI software package includes 
an older Fortran 77 version of the all-order package [5], while a more 
modern Fortran 90 version is set to be released at a later time. The Read 
the Docs page will be updated following the release of the modern all-
order package. A pCI-compatible MBPT package can be installed from 
Ref. [3], but users are recommended to use the included second-cis
program of the all-order package for CI + MBPT instead.

A.1. CI + all-order

The all-order label refers to the inclusion of a large number of terms 
(second-, third-, fourth-order, etc.) in order-by-order many-body pertur-
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Table 6
List of the all-order programs and their input and output files. The columns “Program” and “Description” lists 
the names of the programs and their main capability, respectively. The column “Input (text)” lists user-defined 
text input files. The column “Input (binary)” lists binary input files that are themselves constructed from a 
program (the SGC.CON file is a text file). All programs write their results to standard output. The pCI-py scripts 
write outputs of the all-order programs to out.*.

Program Description Input (text) Input (binary) Output 
tdhf/bdhfa Solves HFD equations bas_wj.inb fort.1

nspl/bspla Produces B-spline basis fort.1 hfspl.1

hfspl.2

bas_wj Converts B-spline basis to pCI basis format hfspl.1 WJ.DAT

hfspl.2

bas_x Converts pCI basis to all-order format HFD.DAT hfspl.1

hfspl.2

allcore-ci Calculates core-core excitations inf.aovb hfspl.1 pair.3

hfspl.2

valsd-ci Calculates core-valence excitations inf.aovb hfspl.1 val2

hfspl.2 sigma

pair.3

sdvw-ci Calculates valence-valence excitations inf.aovb hfspl.1 pair.vw

hfspl.2 sigma1

val2

pair.3

second-ci Calculates second-order MBPT corrections inf.vwb hfspl.1 SGC.CON

hfspl.2 SCRC.CON

sigma1

pair.vw

HFD.DAT

a Program starting with “b” includes Breit corrections.
b Program reads these files as standard input. These are the input files generated by the basis.py script.

bation theory expansion using the iterative solutions until sufficient nu-
merical convergence is achieved. The included all-order package imple-
ments a variant of the linearized coupled-cluster single double (LCCSD) 
method. This version of CC has been developed specifically for atoms 
fully utilizing atomic symmetries and is capable of being efficiently run 
with very large basis sets (over 1000 orbitals), reaching negligible nu-
merical uncertainty associated with the choice of basis set. Formulas can 
be found in Ref. [5].

The all-order package consists of four codes: allcore-ci, valsd-
ci, sdvw-ci, and second-ci. The allcore-ci, valsd-ci, and
sdvw-ci programs calculate core-core, core-valence, and valence-
valence excitations, respectively. The second-ci program calculates 
corrections in second-order MBPT, but for a much larger part of the 
Hamiltonian than the all-order codes, since high accuracy is not re-
quired for corrections associated with higher orbitals.

If the all-order calculation was carried out, it will overwrite the 
second-order results with the all-order results where available. Such 
overlay of the MBPT and the all-order parts drastically improves the 
efficiency of the method. Note that second-ci can also be run as a stan-
dalone program, replacing the MBPT programs of the 2015 CI-MBPT. 
These codes store the resulting data in SGC.CON and SCRC.CON. The
SGC.CON file is typically small, whereas SCRC.CON can take up to a 
few GB in size.

Table 6 displays a list of the all-order programs and their input and 
output files. The runtimes of the all-order programs are dependent on 
the atom size, from a few minutes to nearly a day for the included F77 
version.

A.2. Basis sets for CI + all-order

For the CI + all-order and CI + MBPT methods, basis sets are con-
structed using a combination of HFD orbitals and B-splines to accommo-
date a large number of orbitals. However, one needs too many B-splines 

to reproduce core and lower valence stats with high enough accuracy 
for heavier atoms. Therefore, the core and a few valence electron wave 
functions are taken from Dirac-Hartree-Fock (DHF), and a combined ba-
sis with splines is built. More splines will mean a larger basis for the 
CI as well, so we would like to avoid this. As the CI and all-order code 
packages were originally developed separately, they use basis sets in dif-
ferent formats. The CI programs use HFD.DAT and all-order programs 
use hfspl.1 and hfspl.2 files. The program bas_wj converts the all-
order formatted hfspl.1 and hfspl.2 to the CI formatted HFD.DAT
format, while the program bas_x converts them the other way around. 
Note that the bas_wj program produces the HFD.DAT formatted file 
called WJ.DAT.

The construction of the basis set for CI + all-order or CI + MBPT calcu-
lations follows the general recipe:

1. Produce B-splines
(a) tdhf < bas_wj.in - solves HFD equations in all-order for-

mat
(b) bspl40 < spl.in - produces B-spline basis

2. hfd - solves DHF equations in CI format
3. bas_wj - converts B-spline basis to CI basis format (WJ.DAT)
4. bass - builds combined basis from HFD.DAT and WJ.DAT
5. bas_x - convert combined basis from CI format to all-order format
6. Run all-order or MBPT codes

The Python scripts described in Sec. 7 follow the above recipe to 
construct the basis set and run the all-order and MBPT programs. A more 
detailed description of this recipe and the corresponding programs can 
be found on the pCI Read the Docs.

A.3. CI + MBPT

See Ref. [3] for details on the CI-MBPT package.
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Appendix B. Upscaling the basis set

The typical endpoint of the pCI workflow is to converge the en-
ergies obtained from the pconf program for the basis set. This may 
involve many computations with increasing principal quantum number 
𝑛 or higher partial waves 𝑙. However, users may find that their next CI 
computation will become intractable on their computing system. In this 
case, users can employ a technique we call upscaling the basis set. This 
involves reducing the size of the CI space of a previous calculation by se-
lecting only the most important configurations and removing all others 
from the list. We define the importance of a configuration Ψ𝑖 by their 
weight 𝑤𝑖 =

∑𝑁𝑖

𝑗=1 |𝑐𝑖,𝑗 |2, where 𝑁𝑖 is the number of determinants in con-

figuration 𝑖. A logarithmic cutoff 𝑥 is chosen by balancing the number 
of configurations obtained by removing those below the cutoff with the 
subsequent energy difference between the direct run and the cut run. 
𝑥 is typically chosen so that the resulting energy difference is minimal 
for any resulting energy level. This energy difference is then subtracted 
from the results of subsequent CI calculations involving higher 𝑛 or 𝑙.

This requires the con_cut and merge_ci codes of the CI-MBPT 
code package. See Ref. [3] for information on how to install them.

Appendix C. RPA corrections

The optional RPA programs calculate RPA corrections to the matrix 
elements. First, the rpa program solves RPA equations, calculates radial 
integrals of the effective operators and writes them to files RPA_n.INT, 
where the n=1-13 numerates one-electron operators in the same order 
as they are listed in the block RPA of the file MBPT.INP. This program 
reads three blocks of the file MBPT.INP, namely MBPT, Eval, and RPA.

After rpa is complete, the rpa_dtm program rewrites the radial 
integrals from the RPA_n.INT files to the DTM.INT file, which can sub-
sequently be used by the pdtm program to calculate matrix elements. In 
this way, we take into account the RPA corrections and find matrix ele-
ments of the effective operators. Note that before running rpa_dtm, the 
file DTM.INT has to be constructed by the pdtm program. This is sim-
ply done by running pdtm using the Mode=Init option. More details 
of the programs rpa and rpa_dtm can be found in Ref. [3].

Once the RPA corrections have been inserted into DTM.INT, pdtm
has to be run again. This time, the program calculates matrix elements 
between specified energy levels with RPA corrections.

Appendix D. QED corrections

The optional QED programs include QED corrections in the CI cal-
culations in the form of effective radial integrals via the file SGC.CON, 
similar to how MBPT and all-order corrections are included. Inclusion 
of QED corrections requires three extra programs, sgc0, qed_rot and
qedpot_conf, which can be compiled in the lib directory.

The sgc0 program is first run to generate an empty SGC.CON file. 
The qedpot_conf program uses the empty SGC.CON file as a template, 
and writes QED corrections to the file SGCqed.CON as one-electron ef-
fective radial integrals, if they are nonzero.

The qed_rot program rotates the orbitals by diagonalizing the HFD 
Hamiltonian using the one-electron QED matrix elements calculated by
qedpot_conf. This process iterates until the change in the core orbitals 
converges.

By default, qedpot_conf reads the basis functions from the file
CONF.DAT and uses the QEDMOD potential [64] for calculating the 
matrix elements. Other options can be specified in the input file qed-
pot.inp, where the file for basis functions (e.g., HFD.DAT) and the key
kvar, which determines the variant of the QED potential used, should 
be provided. The possible values of this key are described here:

• 1 - QEDMOD from Ref. [64] (default value)
• 2 - Self-energy (SE) local potential from Ref. [65] + non-local cor-

rection from Ref. [64]

• 3 - SE local potential from Ref. [65]
• 4 - QEDPOT from Ref. [66]
• 5 - Semi-empirical potential from Ref. [67]

The input parameters for qed_rot are

• Kdg - (1 - general diagonalization, 2 - first-order diagonalization)
• Ksg - (1 - do not include QED, 2 - include QED)
• Kbrt - (0 - no Breit, 1 - Gaunt, 2 - Full Breit)

The optional.qed block of the basis.py script allows users to 
specify inclusion of QED corrections when constructing the basis set. 
It generates and runs a bash script batch.qed, which runs the pro-
grams qedpot_conf and qed_rot and creates the corresponding input 
files.

Appendix E. Isotope shifts

To run isotope shift calculations, the entire pCI workflow is essen-
tially repeated several times, varying the key C_is, which defines the 
isotope shift perturbation. The type of isotope shift calculation is de-
fined by the key K_is. For specific mass shift calculations, there is an 
additional key Klow, which determines the method for calculating the 
matrix elements of the Hamiltonian. These keys are set in the input 
files HFD.INP, BASS.INP and CONF.INP. These keys are described 
here:

• K_is defines the type of isotope shift calculation
– 0 - no isotope shift
– 1 - field shift
– 2 - specific mass shift
– 3 - normal mass shift
– 4 - total mass shift (sum of K_is=2 and K_is=3)

• C_is defines the isotope shift perturbation
• Klow defines the method for calculating the matrix elements of the 

mass-shift Hamiltonian
– 0 - nonrelativistic form of the Hamiltonian, the lower component 

of the Dirac bispinor is not taken into account
– 1 - nonrelativistic form of the Hamiltonian, the lower component 

of the Dirac bispinor is taken into account
– 2 - relativistic form of the Hamiltonian, the lower component of 

the Dirac bispinor is taken into account

Note that for sufficient accuracy of the isotope shift calculations, 
it is important to compile the programs pbasc and pconf with ar-
rays of two-electron radial integrals set to the real(double preci-
sion) datatype, rather than the default real(single precision). 
This can be done by changing the value of the type2_real parame-
ter in the params.f90 file from sp to dp. A correct compilation of this 
can be confirmed by looking at the title of the output files BASC.RES
and CONF.RES, which should mention “double precision for 2e 
integrals”.

Repeating the entire pCI workflow manually can be very time-
consuming and error-prone. Instead, users can use the pCI-py scripts 
to automate isotope shift calculations. This is done simply by setting 
the optional.isotope_shifts block in the config.yml file.

optional:
isotope_shifts:

include: True
K_is: 1
C_is: 0.01

By setting optional.isotope_shifts.include to True, the script 
will automatically generate directories for isotope shift calculations in 
the stage basis.py. For the sample above, the basis.py script will 
generate the following file directory:
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config.yml

basis.py

...

/IS

/minus0.01

/minus0.005

/0

/plus0.005

/plus0.01

Repeating with K_is=2 will generate the SMS directory in the root 
directory, etc.

Typically, one starts with a normal CI computation without isotope 
shifts to check the accuracy of energy levels or other properties before 
starting isotope shift calculations. In this case, users can use the iso-

tope_shifts.py script to change the K_is, C_is and Klow values 
from some previously completed 0 directory. This script simply takes 
the input files and changes the values of the relevant keys and reruns 
the programs. The isotope_shifts.py program asks the user to in-
put the K_is and C_is values at runtime, then asks if they would like 
to generate the basis set (basis), run the CI calculation (ci) or analyze 
the resulting data (analysis). The analysis option retrieves the en-
ergy levels from each isotope shift directory, then creates a csv file with 
each energy level and its calculated isotope shift value. The script cal-
culates field shifts in units GHz/fm2, and mass shifts in units GHz⋅amu.

Data availability

I have shared the link to my code in the manuscript as well as in the 
Attach File step.
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