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In state-of-the-art optical lattice clocks, beyond-electric-dipole polarizability terms lead to a breakdown
of magic wavelength trapping. In this Letter, we report a novel approach to evaluate lattice light shifts,
specifically addressing recent discrepancies in the atomic multipolarizability term between experimental
techniques and theoretical calculations. We combine imaging and multi-ensemble techniques to evaluate
lattice light shift atomic coefficients, leveraging comparisons in a dual-ensemble lattice clock to rapidly
evaluate differential frequency shifts. Further, we demonstrate application of a running wave field to probe
both the multipolarizability and hyperpolarizability coefficients, establishing a new technique for future
lattice light shift evaluations.
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Optical lattice clocks (OLCs) are among the most
accurate [1–4] and precise [5–8] sensors ever created by
humankind, positioning them as strong candidates for the
redefinition of the SI second [9]. Modern clock perfor-
mance further supports studies of fundamental physics,
from searches for dark matter [10,11] to tests of general
relativity [12,13]. In parallel, emerging transportable OLCs
promise to revolutionize relativistic geodesy, mapping
Earth’s geoid to new levels [14].
Central to OLC performance is the trapping of ultracold

atoms at the so-called magic wavelength (or frequency)
[15,16], where the differential dynamic polarizability
between clock electronic states vanishes. The resulting
differential light shift is fundamental to OLCs and is an
accuracy-limiting systematic effect [2,4]. Higher-order
perturbations from magic wavelength trapping, such as
magnetic-dipole and electric-quadrupole terms (so-called
multipolarizability) [17], produce nontrival couplings
between the resulting light shifts and the motional states
of the atomic sample, challenging the efficacy of magic
wavelength trapping. Careful characterization of these
shifts is ongoing. Multiple experimental evaluations of
these higher-multipolar corrections in 87Sr [18–20], com-
bined with recent theoretical development [21,22], have

resolved disagreement of both the sign and magnitude of
the multipolarizabilty coefficient. In 171Yb, disagreement
remains between a single experimental result [23] and
theoretical calculations [24–26].
Simultaneously, recent efforts have demonstrated how

imaging techniques combined with multi-ensemble oper-
ation may be used to enhance the measurement capabilities
of OLCs [27]. For example, differential measurements
made by synchronous comparison between multiple
optical clocks [5,6] or within a single clock system [7]
reject common mode laser noise, realizing an effective
decoherence-free subspace [27,28]. Such techniques in 1D
OLCs have demonstrated remarkable progress, observing
the gravitational redshift at the millimeter scale [13] and
utilizing multi-apparatus operation for extended coherence
times [5,29].
In this Letter we demonstrate application of emerging

multi-ensemble techniques to a full differential polariz-
ability evaluation in an Yb OLC. Our experimental appa-
ratus, described in previous publications [2,30], is a
standard OLC utilizing a vertical retro-reflected 1D magic
wavelength optical lattice at 759 nm. Here, we employ a
recently demonstrated “ratchet loading” technique [31]. We
load two spatially separated ensembles using a combination
of magnetic field control during MOT operation and
shelving to the metastable clock state (see Fig. 1). We
then employ clock-mediated Sisyphus cooling [30] to
achieve radial temperatures of ∼600 nK and sideband
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cooling to prepare atoms in the ground longitudinal band,
providing a more uniform sampling of the lattice antinodes.
This dual-ensemble preparation forms the basis of the
experiments reported in this Letter, allowing differential
measurements between the ensembles. Details of the dual-
ensemble preparation are given in the Supplemental
Material [32].
Near the magic wavelength, the lattice light shift δνLS can

bewritten as a function of trap depthU, detuning δL of lattice
frequency νL from the electric dipole (E1) magic frequency
νE1 (δL ¼ νL − νE1), radial temperature Tr, and longitudinal
vibrational state nz. For simplicity we follow Ref. [18],
adopting a light shift model utilizing a harmonic basis (see
Appendix A for a complementary treatment with a more
general model). The lattice light shift is then given by

δνLSðu; δL; nzÞ
νc

≈
�
∂α̃E1
∂ν

δL − α̃M1E2

�
ðnz þ 1=2Þu1=2

−
�
∂α̃E1
∂ν

δL þ 3

2
β̃

�
n2z þ nz þ

1

2

��
u

þ 2β̃

�
nz þ

1

2

�
u3=2 − β̃u2; ð1Þ

where we have divided the clock shift (δνLS) by the
clock frequency (νc) and utilize normalized trap depths
u ¼ U=ER. ER ¼ ðhνLÞ2=2mc2 is the recoil energy and c
the speed of light, m the atomic mass, and h Planck’s
constant. The effects of transverse temperatures are captured
via an effective depth uj → ð1þ jkBTr=uERÞ−1uj [18,52],
where j is the power series exponent for each term in Eq. (1).
kB is the Boltzmann constant and trap depth is measured via
sideband spectroscopy [53]. All trap depths uj in the Letter
implicitly assume this effective radial thermal averaging.
Complete lattice light shift evaluations require knowl-

edge of νE1 and the three differential atomic coefficients
within Eq. (1). ð∂α̃E1=∂νÞ is the linear slope of the differ-
ential E1 polarizability between the ground (1S0) and
excited (3P0) clock states arising from a Taylor expansion
about νE1. α̃M1E2 and β̃ are the differential multipolariz-
ability and hyperpolarizability, respectively. These coeffi-
cients are often evaluated via interleaved comparisons
between two trap depths (u) [26] or two motional states
(nz) [18]. By operating over a broad range of trap depths,
lattice frequencies, and motional states, individual polar-
izability terms can be disentangled and measured. In many
OLCs, however, practical limits of the realizable trap
depths make such an evaluation daunting at the state-of-
the-art level. Here, we overcome this limitation by supple-
menting the standard evaluation techniques with imaging
and multi-ensemble operation.
Evaluation of ∂α̃E1=∂ν—The only terms in Eq. (1) that

include ð∂α̃E1=∂νÞ are proportional to δL (and vice versa).
Therefore, single ensemble measurements of the light shift
taken by temporally self-interleaving between two lattice
detunings δ1 and δ2 allow ð∂α̃E1=∂νÞ to be isolated. With
the same preparation conditions, the frequency difference is

Δνδðu; δ1; δ2; nzÞ
νc

¼ −
∂α̃E1
∂ν

ðδ2 − δ1Þu0; ð2Þ

where we have introduced u0 ¼ ½u − ðnz þ 1=2Þu1=2�.
Critically, such self-interleaved measurements are inde-
pendent of α̃M1E2, β̃, and νE1, while also differentially
rejecting cold collision shifts. As shown in Fig. 2, we
perform these measurements at four trap depths with
δ2 − δ1 ¼ −108.2ð2Þ MHz and find ð∂α̃E1=∂νÞ ¼ 4.2ð1Þ×
10−20=MHz, in excellent agreement with previous
measurements [2,54].
Evaluation of β̃—We now turn to the remaining atomic

coefficients in Eq. (1). At the limited trap depths available
in our apparatus (< 140 ER), evaluation of these shifts
with standard interleaved measurements is challenging.
Instead, we utilize imaging and dual-ensemble operation
as shown in Fig. 1. Frequency comparisons between the
two ensembles (found by converting differences in exci-
tation probabilities to frequency via the known Rabi line
shape [32]) are insensitive to laser frequency-noise, pro-
viding enhanced relative stability [8,27]. We regularly
measure frequency instabilities of ∼4 × 10−17 at 1 s for

(a)

(b)

(c)

FIG. 1. (a) Schematic of a dual-ensemble 1D Yb OLC (not to
scale). The 759 nm lattice is formed via retroreflection of a single
beam and clock light is introduced through the mirror used for
reflection of the 759 nm beam. The directions of the polarization,
magnetic field, and gravity orientation are indicated. (b) A
759 nm transverse running wave may be introduced to ensemble
2, allowing evaluation of the running wave magic wavelength and
hyperpolarizability via differential comparisons. (c) The longi-
tudinal motional state of the atoms in each ensemble may be
manipulated separately, providing enhanced, differential sensi-
tivity to higher-order light shift terms.
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synchronous comparison between ensembles as compared
with ∼3 × 10−16 for temporally self-interleaved measure-
ments, allowing us to evaluate shifts nearly 50 times faster.
We apply an auxiliary running wave field to the second

ensemble [Fig. 1(b)], near the magic frequency (but
> MHz detuned from the standing wave laser frequency).
For a running wave the E1 polarizability and multipolariz-
ability terms simply add, in contrast to a standing wave
where they are out of phase. The fractional frequency shift
from the addition of an auxiliary running wave to the
standing wave is

δνRður; u0; δrÞ
νc

≈ −
�
∂α̃E1
∂ν

δr þ α̃M1E2 þ β̃du0
�
ur; ð3Þ

where ur is the running wave “depth,” u0 the average
standing wave depth experienced by the atoms [as intro-
duced in Eq. (2)], δr ¼ νr − νE1, and νr the running wave
frequency (note that shifts of order u2r and higher have been
omitted here [32]). Equation (3) includes a shift term that is
∝ u0ur, arising from the dichromatic hyperpolarizability β̃d
[55,56]. For parallel linear lattice and running wave polar-
izations (Fig. 1), the dichromatic hyperpolarzability is
related to the more familiar hyperpolarzability of Eq. (1)
by β̃d ¼ 4β̃ [56]. This interference effect provides a new
method to determine β̃with minimal correlation to νE1 [26].
Further, the use of synchronous dual-ensemble measure-
ments facilitates its precise determination at shallow lattice
depths. The auxiliary field has a u0-dependent frequency
ν0rðu0Þ where δνRður; u0; ν0r − νE1Þ ¼ 0, given by

ν0rðu0Þ ¼
�
νE1 −

α̃M1E2
∂α̃E1
∂ν

�
−
4β̃u0
∂α̃E1
∂ν

: ð4Þ

ν0rðu0Þ is a linear function of u0 with a slope revealing β̃ and
an offset ν0rð0Þ ¼ νE1 − α̃M1E2=ð∂α̃E1=∂νÞ, directly relating
νE1 and α̃M1E2.

To experimentally evaluate ν0rðu0Þ we apply a running
wave beam with a waist of ≈150 μm to ensemble 2.
We evaluate the ensemble-averaged depth to be ur ≈ 10,
calibrated in situ by dividing the slope of Fig. 3(a)
by −ð∂α̃E1=∂νÞ. In this experiment, we do not apply
Sisyphus cooling to lower the radial temperature, unlike
all other measurements in this Letter, as the addition of
the running wave interferes with the optical access used
for cooling. At four different standing wave depths the
running wave frequency is stepped over 500 MHz centered
around the approximate location of ν0rðu0Þ (see Fig. 3).
From these measurements a linear fit gives β̃ ¼ −1.7ð4Þ ×
10−21 and ν0rð0Þ ¼ 394 798 300.4ð18Þ MHz. This value of
β̃ falls between previous measurements using relatively
deep optical lattices [23,26] and is in good agreement
with independent evaluations made via two-photon
resonances [57,58].
Evaluation of α̃M1E2 and νE1—Returning to Fig. 1, we

may prepare ensemble 1 in nz ≈ 0 and ensemble 2 in either
nz ≈ 1 or nz ≈ 2 [32]. This allows differential comparisons
between ensembles to be preferentially sensitive to the
α̃M1E2 dominated

ffiffiffi
u

p
term of Eq. (1). The differential

lattice light shift between samples with motional states n1
and n2 is given by

FIG. 2. ð∂α̃E1=∂νÞ is measured by temporally self-interleaving
between lattice frequency detunings δ2 and δ1 for a single
ensemble. The frequency shift, with error bars derived from
the Allan deviation at half the total measurement time, is plotted
versus u0. A zero-intercept linear fit, with 1σ error bars (shaded
region), gives ð∂α̃E1=∂νÞ as the slope.

FIG. 3. Measurement of the running wave magic frequency,
ν0rðu0Þ. (a) The frequency shift arising from the addition of a
running wave, measured synchronously, is plotted versus the
running wave frequency, νr. Error bars are smaller than the point
size and νoffset ¼ 394 798 300 MHz. We show the fit for a
u0 ¼ 54 standing wave contribution with black lines showing
the fitted intercept for ν0rðu0Þ. (b) ν0rðu0Þ is plotted versus u0 for
each of the four evaluated depths. The blue line and associated 1σ
statistical uncertainty region show the fit to Eq. (4).
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Δνnzðu; δ0r; n1; n2Þ
νc

≈
�
∂α̃E1
∂ν

δ0r − 2α̃M1E2

�
ðn2 − n1Þu1=2

−
3

2
β̃ðn22 þ n2 − n21 − n1Þu

þ 2β̃ðn2 − n1Þu3=2; ð5Þ

with δ0r ¼ ½νL − ν0rð0Þ�. Note the elimination of νE1 in
Eq. (5) by substitution of ν0rð0Þ into Eq. (1). With the
determinations of ð∂α̃E1=∂νÞ, ν0rð0Þ, and β̃ in hand, this
leaves only α̃M1E2 to evaluate.
As shown in Fig. 4, we perform differential nz experi-

ments at a variety of trap depths. The shift is shown
normalized by the differential nz applied between ensem-
bles, highlighting the

ffiffiffi
u

p
dependence (fit shown in blue).

The radial temperatures are measured for each ensemble,
and nz-dependent cold collision corrections are applied
[32]. AMonte Carlo method is used to propagate sources of
uncertainty from both measured atomic coefficients and
model inputs to the fit of each ensemble to Eq. (1). We find
α̃M1E2 ¼ −1.41ð9Þ × 10−18, in good agreement with a
previous measurement at lower precision [23]. Finally,
α̃M1E2 is substituted back into the definition of ν0rð0Þ, giving
νE1 ¼ 394 798 266.9ð26Þ MHz. Table I summarizes our
experimental results.
Theoretical predictions of α̃M1E2—It is now recog-

nized that earlier calculations for Yb [24–26], Sr
[24,25,55,59,60], and other alkaline-earth(-like) systems

[24,25,61–64] did not include the important diamagnetic
contribution to the M1 polarizability at the magic wave-
length. This resulted in a disagreement between theoretical
and experimental results [18–20,23], recently resolved in
the case of Sr [21,22]. The diamagnetic shift has been
discussed extensively in the literature for the case of
uniform dc magnetic fields (e.g., Refs. [65–67]). In a
nonrelativistic treatment, the diamagnetic shift appears at
first order in perturbation theory and is proportional to the
expectation value hr2i, where r denotes the distance from
the electron to the nucleus, a sum over all electrons is
implied, and a total electronic angular momentum J ¼ 0 is
assumed. In a relativistic treatment starting from the Dirac
equation, the emergence of the diamagnetic shift is less
conspicuous. It arises at second order in perturbation
theory, being attributed to negative-energy (positron) states
in the summation over states. However, it can be reformu-
lated in terms of the expectation value hβr2i, where β is a
conventional 4 × 4 Dirac matrix [65,66]. Evaluated
between Dirac bispinors, the operators r2 and βr2 have
contributions attributed to large and small components of
the Dirac bispinors. The inclusion of β merely effects a sign
change for the small-component contribution, which van-
ishes in the nonrelativistic limit [67].

FIG. 4. α̃M1E2 is measured via synchronous comparison of
nz ≈ 0 to nz ≈ 1 (black squares) and to nz ≈ 2 (gold diamonds).
The fit to Δνnz=νc, Eq. (5), is shown in blue, with associated 1σ
statistical uncertainty shaded. We plot the shifts normalized by
Δnz ¼ n2 − n1 to highlight the

ffiffiffi
u

p
dependence predominantly

arising from α̃M1E2. State-preparation errors resulted in Δnz ≈
1 → 0.8 and Δnz ≈ 2 → 1.3 [32]. As a result, the plotted fit to
Eq. (5) is meant as a visual guide as it assumes perfect state
preparation. A Monte Carlo fit to Eq. (1) for each ensemble is
required to fully account for nz and other experimental values,
with the results in Table I. A reduced chi-squared of 1.7 is found.

TABLE I. Summary of experimental and theoretical values
derived from this Letter. See Appendix A for a complementary
Born-Oppenheimer þWKB treatment [52].

Coefficient Value

ð∂α̃E1=∂νÞ (10−20=MHz) 4.2(1)
β̃ (10−21) −1.7ð4Þ
α̃Experiment
M1E2 (10−18) −1.41ð9Þ

α̃TheoryM1E2 (10−18) −1.9ð5Þ
νE1 (MHz) 394 798 266.9(26)
ν0rð0Þ (MHz) 394 798 300.4(18)

TABLE II. M1 differential polarizability, evaluated in the dc
limit and at the magic frequency. Theoretical contributions
include the 3P0 − 3P1 paramagnetic (positive energy state) con-
tribution, the diamagnetic (negative energy state) contribution,
and other smaller contributions. This is an abbreviated version of
a more expansive table presented in the Supplemental Material
[32], which also includes discussion of theoretical uncertainties.
For the dc limit, the final theoretical value is compared to the
experimental value. All values are in 10−3 a.u., where a.u. denotes
atomic units based on Gaussian electromagnetic expressions.

Contribution dc limit Magic frequency

3P0 − 3P1 5.469 −0.016
Diamagnetic −0.099 −0.099
Other 0.008 −0.002

Total 5.379(10) −0.116ð5Þ
Experiment [2,68] 5.363(6)
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For Yb, we start by considering the differential M1
polarizability in the dc limit. Table II presents a breakdown
of contributions calculated as detailed in the Supplemental
Material [32]. The final results are compared to the
experimental value, which has a 0.1% uncertainty [2,68].
As expected, we find that the 3P0–

3P1 “paramagnetic”
contribution dominates, in part due to a small energy
denominator (i.e., the fine structure splitting) in the
second-order summation over states. Meanwhile, we find
that the diamagnetic contribution amounts to a ∼2%
correction, with other contributions being an order of
magnitude smaller still. Though subdominant, the dia-
magnetic contribution is non-negligible in the theory-
experiment comparison, exemplifying its role in the differ-
ential M1 polarizability.
We next consider the differential M1 polarizability

evaluated at the magic wavelength (see Table II and
[32]). We find that, relative to the dc limit, the 3P0–

3P1

paramagnetic contribution is largely suppressed, a conse-
quence of the lattice photon energy being much greater than
the fine structure splitting. Meanwhile, the dc value for the
diamagnetic contribution can be directly applied for the
magic wavelength case, as the photon energy is signifi-
cantly below the energy associated with electron-positron
pair production. It follows that the diamagnetic contribution
becomes the dominant contribution for the differential M1
polarizability at the magic wavelength. Further, evaluating
and including the differential E2 polarizability at the
magic wavelength [32], we obtain the theoretical result
α̃M1E2 ¼ −1.9ð5Þ × 10−18, in good agreement with the
experimental results (Table I). Finally, using formalism
described in Ref. [59] we found β̃ ¼ −2.3 × 10−21 in the
CIþ all-order approximation. In two dominant terms, we
replaced the theoretical denominators with more correct
experimental ones, that strongly affect the result. We
consider the result an order of magnitude estimate.
Summary—With multi-ensemble operation and imaging,

we realize a complete lattice light shift evaluation of a
standard retroreflected 1D OLC using modest trap depths.
Our independent evaluation provides valuable atomic
coefficients for Yb OLCs while also demonstrating novel
techniques for the evaluation of both ð∂α̃E1=∂νÞ, β̃, and
α̃M1E2 [55]. Finally, the experimental and theoretical results
from this Letter further validate the recent consensus on the
origin of the disagreement on the sign and magnitude of the
multipolarizability term α̃M1E2.

Acknowledgments—We thank K. Kim and A. Staron for
careful reading of the manuscript. T. B. acknowledges
insightful conversations with A. Goban and R. Hutson.
The experimental work was supported by NIST, ONR, and
NSF QLCI Grants No. 2016244 and No. 2012117 (K. G.).
T. B. acknowledges support from the NRC RAP. The
theoretical work has been supported in part by the U.S.
NSF Grants No. PHY-2309254, No. OMA-2016244, U.S.

Office of Naval Research Grant No. N00014-20-1-2513,
and by the European Research Council (ERC) under the
Horizon 2020 Research and Innovation Program of
the European Union (Grant Agreement No. 856415).
Calculations in this work were done through the use of
Information Technologies resources at the University of
Delaware, specifically the high-performance Caviness and
DARWIN computer clusters.

[1] I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H.
Katori, Cryogenic optical lattice clocks, Nat. Photonics 9,
185 (2015).

[2] W. McGrew, X. Zhang, R. Fasano, S. Schäffer, K. Beloy, D.
Nicolodi, R. Brown, N. Hinkley, G. Milani, M. Schioppo
et al., Atomic clock performance enabling geodesy below
the centimetre level, Nature (London) 564, 87 (2018).

[3] T. Bothwell, D. Kedar, E. Oelker, J. M. Robinson, S. L.
Bromley, W. L. Tew, J. Ye, and C. J. Kennedy, JILA
Sri optical lattice clock with uncertainty of 2 × 10−18,
Metrologia 56, 065004 (2019).

[4] A. Aeppli, K. Kim, W. Warfield, M. S. Safronova, and J. Ye,
Clock with 8 × 10−19 systematic uncertainty, Phys. Rev.
Lett. 133, 023401 (2024).

[5] M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J.
Fasano, K. Beloy, T. Yoon, G. Milani, D. Nicolodi, J.
Sherman et al., Ultrastable optical clock with two cold-atom
ensembles, Nat. Photonics 11, 48 (2017).

[6] E. Oelker, R. Hutson, C. Kennedy, L. Sonderhouse, T.
Bothwell, A. Goban, D. Kedar, C. Sanner, J. Robinson, G.
Marti et al., Demonstration of 4.8 × 10−17 stability at 1 s for
two independent optical clocks, Nat. Photonics 13, 714
(2019).

[7] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and
S. Kolkowitz, Differential clock comparisons with a multi-
plexed optical lattice clock, Nature (London) 602, 425
(2022).

[8] T. Bothwell, C. J. Kennedy, A. Aeppli, D. Kedar, J. M.
Robinson, E. Oelker, A. Staron, and J. Ye, Resolving
the gravitational redshift across a millimetre-scale atomic
sample, Nature (London) 602, 420 (2022).

[9] N. Dimarcq, M. Gertsvolf, G. Mileti, S. Bize, C. Oates, E.
Peik, D. Calonico, T. Ido, P. Tavella, F. Meynadier et al.,
Roadmap towards the redefinition of the second, Metrologia
61, 012001 (2024).

[10] A. Derevianko and M. Pospelov, Hunting for topological
dark matter with atomic clocks, Nat. Phys. 10, 933 (2014).

[11] C. J. Kennedy, E. Oelker, J. M. Robinson, T. Bothwell, D.
Kedar, W. R. Milner, G. E. Marti, A. Derevianko, and J. Ye,
Precision metrology meets cosmology: Improved con-
straints on ultralight dark matter from atom-cavity fre-
quency comparisons, Phys. Rev. Lett. 125, 201302 (2020).

[12] M. Takamoto, I. Ushijima, N. Ohmae, T. Yahagi, K.
Kokado, H. Shinkai, and H. Katori, Test of general relativity
by a pair of transportable optical lattice clocks, Nat.
Photonics 14, 411 (2020).

[13] X. Zheng, J. Dolde, M. C. Cambria, H. M. Lim, and S.
Kolkowitz, A lab-based test of the gravitational redshift
with a miniature clock network, Nat. Commun. 14, 4886
(2023).

PHYSICAL REVIEW LETTERS 134, 033201 (2025)

033201-5

https://doi.org/10.1038/nphoton.2015.5
https://doi.org/10.1038/nphoton.2015.5
https://doi.org/10.1038/s41586-018-0738-2
https://doi.org/10.1088/1681-7575/ab4089
https://doi.org/10.1103/PhysRevLett.133.023401
https://doi.org/10.1103/PhysRevLett.133.023401
https://doi.org/10.1038/nphoton.2016.231
https://doi.org/10.1038/s41566-019-0493-4
https://doi.org/10.1038/s41566-019-0493-4
https://doi.org/10.1038/s41586-021-04344-y
https://doi.org/10.1038/s41586-021-04344-y
https://doi.org/10.1038/s41586-021-04349-7
https://doi.org/10.1088/1681-7575/ad17d2
https://doi.org/10.1088/1681-7575/ad17d2
https://doi.org/10.1038/nphys3137
https://doi.org/10.1103/PhysRevLett.125.201302
https://doi.org/10.1038/s41566-020-0619-8
https://doi.org/10.1038/s41566-020-0619-8
https://doi.org/10.1038/s41467-023-40629-8
https://doi.org/10.1038/s41467-023-40629-8


[14] T. E. Mehlstäubler, G. Grosche, C. Lisdat, P. O. Schmidt,
and H. Denker, Atomic clocks for geodesy, Rep. Prog. Phys.
81, 064401 (2018).

[15] M. Takamoto and H. Katori, Spectroscopy of the 1S0 − 3P0

clock transition of 87Sr in an optical lattice, Phys. Rev. Lett.
91, 223001 (2003).

[16] J. Ye, H. Kimble, and H. Katori, Quantum state engineering
and precision metrology using state-insensitive light traps,
Science 320, 1734 (2008).

[17] A. V. Taichenachev, V. I. Yudin, V. D. Ovsiannikov, V. G.
Pal’Chikov, and C.W. Oates, Frequency shifts in an optical
lattice clock due to magnetic-dipole and electric-quadrupole
transitions, Phys. Rev. Lett. 101, 193601 (2008).

[18] I. Ushijima, M. Takamoto, and H. Katori, Operational magic
intensity for Sr optical lattice clocks, Phys. Rev. Lett. 121,
263202 (2018).

[19] S. Dörscher, J. Klose, S. Maratha Palli, and C. Lisdat,
Experimental determination of the E2 −M1 polarizability
of the strontium clock transition, Phys. Rev. Res. 5,
L012013 (2023).

[20] K. Kim, A. Aeppli, T. Bothwell, and J. Ye, Evaluation of
lattice light shift at low 10−19 uncertainty for a shallow
lattice Sr optical clock, Phys. Rev. Lett. 130, 113203 (2023).

[21] F.-F. Wu, T.-Y. Shi, W.-T. Ni, and L.-Y. Tang, Contribution
of negative-energy states to the E2 −M1 polarizability of
optical clocks, Phys. Rev. A 108, L051101 (2023).

[22] S. G. Porsev, M. G. Kozlov, and M. S. Safronova, Contri-
bution of negative-energy states to multipolar polarizabil-
ities of the Sr optical lattice clock, Phys. Rev. A 108,
L051102 (2023).

[23] N. Nemitz, A. A. Jørgensen, R. Yanagimoto, F. Bregolin,
and H. Katori, Modeling light shifts in optical lattice clocks,
Phys. Rev. A 99, 033424 (2019).

[24] H. Katori, V. D. Ovsiannikov, S. I. Marmo, and V. G.
Palchikov, Strategies for reducing the light shift in atomic
clocks, Phys. Rev. A 91, 052503 (2015).

[25] V. D. Ovsiannikov, S. I. Marmo, V. G. Palchikov, and H.
Katori, Higher-order effects on the precision of clocks of
neutral atoms in optical lattices, Phys. Rev. A 93, 043420
(2016).

[26] R. C. Brown, N. B. Phillips, K. Beloy, W. F. McGrew, M.
Schioppo, R. J. Fasano, G. Milani, X. Zhang, N. Hinkley, H.
Leopardi et al., Hyperpolarizability and operational magic
wavelength in an optical lattice clock, Phys. Rev. Lett. 119,
253001 (2017).

[27] G. E. Marti, R. B. Hutson, A. Goban, S. L. Campbell, N. Poli,
and J. Ye, Imaging optical frequencies with 100 μHz precision
and 1.1 μm resolution, Phys. Rev. Lett. 120, 103201 (2018).

[28] T.Manovitz, R. Shaniv, Y. Shapira, R. Ozeri, andN. Akerman,
Precision measurement of atomic isotope shifts using a two-
isotope entangled state, Phys. Rev. Lett. 123, 203001 (2019).

[29] M. E. Kim, W. F. McGrew, N. V. Nardelli, E. R. Clements,
Y. S. Hassan, X. Zhang, J. L. Valencia, H. Leopardi, D. B.
Hume, T. M. Fortier, A. D. Ludlow, and D. R. Leibrandt,
Improved interspecies optical clock comparisons through
differential spectroscopy, Nat. Phys. 19, 25 (2023).

[30] C.-C. Chen, J. L. Siegel, B. D. Hunt, T. Grogan, Y. S.
Hassan, K. Beloy, K. Gibble, R. C. Brown, and A. D.
Ludlow, Clock-line-mediated sisyphus cooling, Phys.
Rev. Lett. 133, 053401 (2024).

[31] Y. S. Hassan, T. Kobayashi, T. Bothwell, J. L. Siegel, B. D.
Hunt, K. Beloy, K. Gibble, T. Grogan, and A. Ludlow,
Ratchet loading and multi-ensemble operation in an optical
lattice clock, Quantum Sci. Technol. 9, 045023 (2024).

[32] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.134.033201, which
contains Refs. [33–51], for details on dual-ensemble load-
ing, longitudinal state preparation, running wave light shifts,
frequency comparisons, comprehensive tables of theoretical
contributions to the M1 and E2 polarizabilities, and de-
scription of theoretical uncertainty.

[33] X. Zhang, K. Beloy, Y. S. Hassan, W. F. McGrew, C.-C.
Chen, J. L. Siegel, T. Grogan, and A. D. Ludlow, Subrecoil
clock-transition laser cooling enabling shallow optical
lattice clocks, Phys. Rev. Lett. 129, 113202 (2022).

[34] D. Leibfried, R. Blatt, C. Monroe, and D. Wineland,
Quantum dynamics of single trapped ions, Rev. Mod. Phys.
75, 281 (2003).

[35] T. L. Nicholson, A new record in atomic clock performance,
Ph.D. thesis,University ofColoradoBoulder,CO,USA,2015.

[36] T. L. Nicholson, S. Campbell, R. Hutson, G. E. Marti, B.
Bloom,R. L.McNally,W.Zhang,M.Barrett,M. S.Safronova,
G. Strouse et al., Systematic evaluation of an atomic clock at
2 × 10−18 total uncertainty, Nat. Commun. 6, 6896 (2015).

[37] D. A. Steck, Quantum and atom optics (2007), https://
atomoptics.uoregon.edu/~dsteck/teaching/quantum-optics/.

[38] A. D. Ludlow, The strontium optical lattice clock: optical
spectroscopy with sub-Hertz accuracy, Ph.D. thesis, Uni-
versity of Colorado at Boulder, 2008.

[39] A.D. Ludlow, M.M. Boyd, J. Ye, E. Peik, and P. O. Schmidt,
Optical atomic clocks, Rev. Mod. Phys. 87, 637 (2015).

[40] S. G. Porsev, A. Derevianko, and E. N. Fortson, Possibility
of an optical clock using the 61S0 → 63Po

0 transition in
171;173Yb atoms held in an optical lattice, Phys. Rev. A 69,
021403(R) (2004).

[41] V.A. Dzuba, V. V. Flambaum, and M.G. Kozlov, Combination
of the many-body perturbation theory with the configuration-
interaction method, Phys. Rev. A 54, 3948 (1996).

[42] M. S. Safronova, M. G. Kozlov, W. R. Johnson, and D.
Jiang, Development of a configuration-interaction plus all-
order method for atomic calculations, Phys. Rev. A 80,
012516 (2009).

[43] R. M. Sternheimer, On nuclear quadrupole moments, Phys.
Rev. 80, 102 (1950).

[44] A. Dalgarno and J. T. Lewis, The exact calculation of long-
range forces between atoms by perturbation theory, Proc. R.
Soc. A 233, 70 (1955).

[45] D. M. Jones, F. van Kann, and J. J. McFerran, Intercombi-
nation line frequencies in 171Yb validated with the clock
transition, Appl. Opt. 62, 3932 (2023).

[46] S. M. Brewer, J.-S. Chen, K. Beloy, A. M. Hankin, E. R.
Clements, C. W. Chou, W. F. McGrew, X. Zhang, R. J.
Fasano, D. Nicolodi, H. Leopardi, T. M. Fortier, S. A.
Diddams, A. D. Ludlow, D. J. Wineland, D. R. Leibrandt,
and D. B. Hume, Measurements of 27Alþ and 25Mgþ

magnetic constants for improved ion-clock accuracy, Phys.
Rev. A 100, 013409 (2019).

[47] M.M.Boyd, T. Zelevinsky,A. D. Ludlow, S. Blatt, T. Zanon-
Willette, S. M. Foreman, and J. Ye, Nuclear spin effects in
optical lattice clocks, Phys. Rev. A 76, 022510 (2007).

PHYSICAL REVIEW LETTERS 134, 033201 (2025)

033201-6

https://doi.org/10.1088/1361-6633/aab409
https://doi.org/10.1088/1361-6633/aab409
https://doi.org/10.1103/PhysRevLett.91.223001
https://doi.org/10.1103/PhysRevLett.91.223001
https://doi.org/10.1126/science.1148259
https://doi.org/10.1103/PhysRevLett.101.193601
https://doi.org/10.1103/PhysRevLett.121.263202
https://doi.org/10.1103/PhysRevLett.121.263202
https://doi.org/10.1103/PhysRevResearch.5.L012013
https://doi.org/10.1103/PhysRevResearch.5.L012013
https://doi.org/10.1103/PhysRevLett.130.113203
https://doi.org/10.1103/PhysRevA.108.L051101
https://doi.org/10.1103/PhysRevA.108.L051102
https://doi.org/10.1103/PhysRevA.108.L051102
https://doi.org/10.1103/PhysRevA.99.033424
https://doi.org/10.1103/PhysRevA.91.052503
https://doi.org/10.1103/PhysRevA.93.043420
https://doi.org/10.1103/PhysRevA.93.043420
https://doi.org/10.1103/PhysRevLett.119.253001
https://doi.org/10.1103/PhysRevLett.119.253001
https://doi.org/10.1103/PhysRevLett.120.103201
https://doi.org/10.1103/PhysRevLett.123.203001
https://doi.org/10.1038/s41567-022-01794-7
https://doi.org/10.1103/PhysRevLett.133.053401
https://doi.org/10.1103/PhysRevLett.133.053401
https://doi.org/10.1088/2058-9565/ad6286
http://link.aps.org/supplemental/10.1103/PhysRevLett.134.033201
http://link.aps.org/supplemental/10.1103/PhysRevLett.134.033201
http://link.aps.org/supplemental/10.1103/PhysRevLett.134.033201
http://link.aps.org/supplemental/10.1103/PhysRevLett.134.033201
http://link.aps.org/supplemental/10.1103/PhysRevLett.134.033201
http://link.aps.org/supplemental/10.1103/PhysRevLett.134.033201
http://link.aps.org/supplemental/10.1103/PhysRevLett.134.033201
https://doi.org/10.1103/PhysRevLett.129.113202
https://doi.org/10.1103/RevModPhys.75.281
https://doi.org/10.1103/RevModPhys.75.281
https://doi.org/10.1038/ncomms7896
https://atomoptics.uoregon.edu/%7Edsteck/teaching/quantum-optics/
https://atomoptics.uoregon.edu/%7Edsteck/teaching/quantum-optics/
https://atomoptics.uoregon.edu/%7Edsteck/teaching/quantum-optics/
https://atomoptics.uoregon.edu/%7Edsteck/teaching/quantum-optics/
https://doi.org/10.1103/RevModPhys.87.637
https://doi.org/10.1103/PhysRevA.69.021403
https://doi.org/10.1103/PhysRevA.69.021403
https://doi.org/10.1103/PhysRevA.54.3948
https://doi.org/10.1103/PhysRevA.80.012516
https://doi.org/10.1103/PhysRevA.80.012516
https://doi.org/10.1103/PhysRev.80.102.2
https://doi.org/10.1103/PhysRev.80.102.2
https://doi.org/10.1098/rspa.1955.0246
https://doi.org/10.1098/rspa.1955.0246
https://doi.org/10.1364/AO.488653
https://doi.org/10.1103/PhysRevA.100.013409
https://doi.org/10.1103/PhysRevA.100.013409
https://doi.org/10.1103/PhysRevA.76.022510


[48] L. Olschewski, Determination of the nuclear magnetic mo-
ments on free 43Ca-, 87Sr-, 135Ba-, 137Ba-, 171Yb- and 173Yb-
atoms bymeans of optical pumping,Z. Phys.249, 205 (1972).

[49] F. D. Feiock and W. R. Johnson, Relativistic evaluation of
internal diamagnetic fields for atoms and ions, Phys. Rev.
Lett. 21, 785 (1968).

[50] G. H. Fuller, Nuclear spins and moments, J. Phys. Chem.
Ref. Data 5, 835 (1976).

[51] V. A. Dzuba and A. Derevianko, Dynamic polarizabilities
and related properties of clock states of the ytterbium atom,
J. Phys. B 43, 074011 (2010).

[52] K. Beloy, W. F. McGrew, X. Zhang, D. Nicolodi, R. J.
Fasano, Y. S. Hassan, R. C. Brown, and A. D. Ludlow,
Modeling motional energy spectra and lattice light shifts
in optical lattice clocks, Phys. Rev. A 101, 053416 (2020).

[53] S. Blatt, J.W. Thomsen, G. K. Campbell, A. D. Ludlow,M.D.
Swallows, M. J. Martin, M.M. Boyd, and J. Ye, Rabi spec-
troscopy and excitation inhomogeneity in a one-dimensional
optical lattice clock, Phys. Rev. A 80, 052703 (2009).

[54] H. Kim, M.-S. Heo, C. Y. Park, D.-H. Yu, and W.-K. Lee,
Absolute frequency measurement of the 171Yb optical lattice
clock at KRISS using TAI for over a year, Metrologia 58,
055007 (2021).

[55] V. D. Ovsiannikov, V. G. Pal’Chikov, A. V. Taichenachev,
V. I. Yudin, and H. Katori, Multipole, nonlinear, and
anharmonic uncertainties of clocks of Sr atoms in an optical
lattice, Phys. Rev. A 88, 013405 (2013).

[56] K. Beloy (to be published).
[57] T. Kobayashi, D. Akamatsu, Y. Hisai, T. Tanabe, H. Inaba,

T. Suzuyama, F.-L. Hong, K. Hosaka, and M. Yasuda,
Uncertainty evaluation of an 171Yb optical lattice clock at
NMIJ, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65,
2449 (2018).

[58] M. Pizzocaro, F. Bregolin, P. Barbieri, B. Rauf, F. Levi, and
D. Calonico, Absolute frequency measurement of the

1S0 − 3P0 transition of 171Yb with a link to international
atomic time, Metrologia 57, 035007 (2020).

[59] S. G. Porsev, M. S. Safronova, U. I. Safronova, and M. G.
Kozlov, Multipolar polarizabilities and hyperpolarizabilities
in the Sr optical lattice clock, Phys. Rev. Lett. 120, 063204
(2018).

[60] F.-F. Wu, Y.-B. Tang, T.-Y. Shi, and L.-Y. Tang, Dynamic
multipolar polarizabilities and hyperpolarizabilities of the Sr
lattice clock, Phys. Rev. A 100, 042514 (2019).

[61] V. D. Ovsiannikov, S. I. Marmo, S. N. Mokhnenko, and
V. G. Palchikov, Higher-order effects on uncertainties of
clocks of Mg atoms in an optical lattice, J. Phys. Conf. Ser.
793, 012020 (2017).

[62] F.-F. Wu, Y.-B. Tang, T.-Y. Shi, and L.-Y. Tang,
Magic-intensity trapping of the Mg lattice clock with light
shift suppressed below 10−19, Phys. Rev. A 101, 053414
(2020).

[63] S. G. Porsev and M. S. Safronova, Calculation of higher-
order corrections to the light shift of the 5s2 1S0 − 5s5p 3Po

0

clock transition in Cd, Phys. Rev. A 102, 012811 (2020).
[64] L. Wu, X. Wang, T. Wang, J. Jiang, and C. Dong, Be optical

lattice clocks with the fractional Stark shift up to the level of
10−19, New J. Phys. 25, 043011 (2023).

[65] R. Szmytkowski, Larmor diamagnetism and Van Vleck
paramagnetism in relativistic quantum theory: The Gordon
decomposition approach, Phys. Rev. A 65, 032112 (2002).

[66] W. Kutzelnigg, Diamagnetism in relativistic theory, Phys.
Rev. A 67, 032109 (2003).

[67] N. Shiga, W.M. Itano, and J. J. Bollinger, Diamagnetic
correction to the 9Beþ ground-state hyperfine constant,
Phys. Rev. A 84, 012510 (2011).

[68] The quadratic Zeeman shift coefficient for the clock
transition is reported as −0.060 95ð7Þ Hz=G2 in Ref. [2].
Here, we report a corrected value of −0.059 97ð7Þ Hz=G2,
as discussed in the Supplemental Material [32].

End Matter

Appendix: Born-Oppenheimer þWKB approximation—
The lattice light shift model in the main text follows a
standard harmonic basis treatment [18]. While it gives
important physical intuition, these models are known
to break down at higher temperatures as they fail to
capture axial-radial couplings [52]. Considering our radial
temperature of ∼600 nK (∼1 μK in the running wave
measurements), we elect to perform an additional analysis
using a Born-Oppenheimer þWKB treatment (BOþ
WKB) which better captures axial-radial couplings [52].
In this treatment the lattice light shift is given by

δνLSðu; δL; nz; TrÞ
νc

≈ −
X
nz

Wnz

�
∂α̃E1
∂ν

δLXðnz; u0; TrÞu0

þ α̃M1E2Yðnz; u0; TrÞu0
þ β̃Zðnz; u0; TrÞu20

�
; ðA1Þ

where Wnz is an nz band weight and u0 is the peak trap
depth normalized by ER. Xðnz; u0; TrÞ, Yðnz; u0; TrÞ, and
Zðnz; u0; TrÞ are trap depth reduction factors which are
numerically calculated [52]. As presented in Table III,
we find good agreement between models, but note a
1-σ discrepancy of ð∂α̃E1=∂νÞ. We note that future
evaluations with improved uncertainties will likely need
to utilize colder temperatures to continue to employ the
harmonic basis model.

TABLE III. Comparison of experimental results as derived from
either the harmonic [Eq. (1)] or BOþWKB [Eq. (1)] treatment.

Coefficient Harmonic basis BOþWKB

ð∂α̃E1=∂νÞ (10−20=MHz) 4.21(10) 4.31(9)
β̃ (10−21) −1.7ð4Þ −2.0ð6Þ
α̃Experiment
M1E2 (10−18) −1.41ð9Þ −1.45ð8Þ

νE1 (MHz) 394 798 266.9(26) 394 798 266.3(30)
ν0rð0Þ (MHz) 394 798 300.4(18) 394 798 300.0(25)
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