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Optical telecommunications-band clock based on neutral titanium atoms
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We propose an optical clock based on ultranarrow transitions in neutral titanium, which exhibit small
blackbody radiation and quadratic Zeeman shifts and have wavelengths in the S-, C-, and L-telecommunications
fiber bands, allowing for integration with robust laser technology. We calculate relevant properties using a high-
precision relativistic hybrid method that combines configuration interaction and coupled-cluster approaches. To
identify magic wavelengths, we have completed the largest-to-date direct dynamical polarizability calculations.
Finally, we identify challenges that arise from magnetic dipole-dipole interactions and describe an approach to
overcome them. A telecommunications-band atomic frequency standard will aid the deployment of optical clock
networks and clock comparisons over long distances.
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Optical atomic clocks have taken a giant leap in recent
years, with several experiments reaching uncertainties at the
10−18 level [1–3]. The comparison of clocks based on dif-
ferent atomic standards [4] or placed in separate locations
[5] enables important applications such as relativistic geodesy
[6], tests of fundamental physics [7], and dark matter searches
[8]. These applications motivate the development of synchro-
nized clock networks and transportable clocks that operate in
extreme and distant environments [9].

The leading neutral-atom optical clocks operate on wave-
lengths of 698 nm (Sr) [10] and 578 nm (Yb) [11]. Light
at these wavelengths is strongly attenuated in optical fibers,
posing a challenge to long-distance time transfer. These wave-
lengths are also inconvenient for constructing the ultrastable
lasers that are an essential component of optical clocks.

By comparison, an optical atomic clock operating in the
telecommunication wavelength band would have clear advan-
tages. The S, C, and L bands, ranging altogether between
about 1460 and 1625 nm, feature low losses in standard opti-
cal fibers. Stable light sources and robust optical amplifiers are
also available across these ranges [12]. These features would
support the development of fiber-linked terrestrial clock net-
works over continental distances.

We propose the use of ultranarrow optical transitions in
atomic titanium (Ti) as the basis of a telecommunications-
band atomic clock. It has recently been pointed out that
numerous transition-metal elements, including Ti, can be
laser cooled on near-cycling optical transitions [13], al-
lowing for the adoption of optical lattice or tweezer
trapping techniques [14] used in today’s leading neutral-
atom clocks. We identify several transitions between the
3d24s2 a3F and 3d3(4F )4s a5F fine-structure manifolds in
Ti with transition wavelengths between 1483 and 1610 nm
(see Fig. 1 and Table I) that can serve as optical clock

references for ultrastable telecommunications-band light
sources.

From a numerical calculation of the Ti level structure, we
identify several key features that make Ti an attractive atom
for clock applications: the extreme narrowness of the candi-
date clock transitions, a weak clock sensitivity to blackbody
radiation shifts, and the existence of several magic wave-
lengths for optical trapping. While we identify challenges
posed by the nonzero angular momentum of the clock states
in Ti, we show that a proper magic-wavelength condition
for optical trapping, which imposes a significant differential
tensor ac Stark shift, mitigates their effects.

Our analysis relies on high-precision atomic structure cal-
culations, by which we characterize 85 levels of neutral Ti.
For this, we employ a hybrid method that combines the con-
figuration interaction (CI) and linearized coupled-cluster (CC)
approaches (referred to as CI+all-order method [15,16]). In
this method, the correlations between four valence electrons
are included via a large-scale CI computation using a highly
parallel message passing interface (MPI) CI code [16,17].
Several computations with increased numbers of configura-
tions were carried out to ensure convergence. The core-core
and core-valence correlations are included using an effec-
tive Hamiltonian formalism [15]. We construct the effective
Hamiltonian using second-order many-body perturbation the-
ory (MBPT) and more accurate CC methods. The difference
between these results gives the size of the higher-order cor-
rections, which we use to estimate uncertainties on all theory
values [16]. The results are used to calculate transition rates,
dynamical polarizabilities, and systematic shifts in the clock
transitions. Further details of the computational methods are
given in the Supplemental Material [18].

Several clock transitions are identified in Table I. Tran-
sitions between the a3F and a5F manifolds occur via spin

2469-9926/2023/107(5)/L051102(6) L051102-1 ©2023 American Physical Society

https://orcid.org/0000-0003-1102-2400
https://orcid.org/0000-0002-4791-063X
https://orcid.org/0000-0002-7953-216X
https://orcid.org/0000-0003-0417-2726
https://orcid.org/0000-0002-3724-3730
https://orcid.org/0009-0003-8462-3407
https://orcid.org/0000-0002-4845-5835
https://orcid.org/0000-0002-1305-4011
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.107.L051102&domain=pdf&date_stamp=2023-05-19
https://doi.org/10.1103/PhysRevA.107.L051102


SCOTT EUSTICE et al. PHYSICAL REVIEW A 107, L051102 (2023)

TABLE I. List of proposed optical clock transitions in Ti. All
transitions are between the lower a3F and upper a5F terms. The
lower (upper) states are indexed by J (J ′). Transition wavelengths λ

are taken from Ref. [19]. The telecommunications band is indicated,
with S (short), C (conventional), and L (long) bands noted. M1, E2
reduced matrix elements DM1, DE2 and transition linewidths � are
calculated. The two clock transitions highlighted in the text are in
bold.

J J ′ λ (nm) Tele. DM1 DE2 �

band (10−3μB) (a.u.) (10−6 s−1)

4 5 1548.926 C 1.0(5) 0.140(4) 242(5)
4 4 1573.346 L 0.36(18) 0.134(8) 239(5)
4 3 1593.846 L 1.02(12) 0.0015(3) 227(5)
4 2 1609.816 L N/A 0.0314(27) 214(5)
3 5 1498.615 S N/A 0.0472(7) 162.2(2.6)
3 4 1521.463 S 0.4(4) 0.027(10) 159.1(2.5)
3 3 1540.625 C 0.2(2) 0.124(4) 147.2(2.6)
3 2 1555.541 C 0.3(4) 0.0204(22) 134.3(2.6)
3 1 1565.754 L N/A 0.0463(23) 129.2(2.5)
2 4 1483.073 S N/A 0.0196(26) 32.75(29)
2 3 1501.275 S 0.40(16) 0.024(7) 20.83(36)
2 2 1515.435 S 0.1(1) 0.1006(24) 7.93(38)
2 1 1525.127 S 0.23(2) 0.0643(11) 2.85(11)

forbidden electric quadrupole (E2) and magnetic dipole (M1)
transitions. Calculated reduced matrix elements for these
transitions are tabulated. The calculated natural linewidths
account for both the decay of the upper state to the lower
manifold on the listed E2 and M1 transitions and the M1
decays within each fine-structure manifold. The transitions are
all exceptionally narrow, allowing for optical atomic clocks
with long coherence times.

In this Letter, we focus on the a3F4 → a5F5 transition
at 1549 nm unless otherwise noted. An advantage of this
transition is that the a5F5 state is the lower level of the near-
cycling 498 nm transition, which is suited for laser cooling.
Our calculations predict that the cooling transition has low
branching ratios to other even-parity states (∼10−6), enabling
single-laser state preparation and readout for atoms in the up-
per clock state. For details on calculations relevant to the laser
cooling transition, see the Supplemental Material [18]. An
additional benefit is that light at the 1549 nm clock wavelength
can be generated by narrow-linewidth, high-power Er-doped
fiber lasers, simplifying the required optical setup.

We consider the three titanium isotopes which have zero
nuclear spin, and therefore no hyperfine structure (46,48,50Ti).
To make the clock insensitive to first-order differential Zee-
man shifts from stray magnetic fields, we drive the |mJ =
0〉 → |m′

J = 0〉 transition, with mJ being the magnetic quan-
tum number and the primed symbols and numbers referring
to the upper a5F state. Because the E2 matrix element for
this transition is zero, only the M1 matrix element contributes
to a direct one-photon drive of the clock transition. Choosing
quantization, clock-laser polarization, and clock-laser propa-
gation axes as shown in Fig. 1, we calculate that for a driving
intensity of 0.1 W/mm2, we achieve a clock Rabi frequency
of 91(46) Hz.

FIG. 1. (a) Relevant atomic structure in Ti for an optical clock.
The a3F and a5F terms serve as the basis for the optical clock, while
the excited y5Go

6 level serves as the excited state for laser cooling of
Ti. The two optical clock transitions highlighted in the text are shown
as maroon arrows; the laser cooling transition is shown in cyan.
(b) A diagram of the proposed experimental system. Polarizations
are indicated on a given beam by a small arrow of the same color as
the beam itself.

To compare the strength of this M1 transition to that of an
E2 transition in the same set of transitions, we also consider
driving the |a3F4, mJ = 0〉 → |a5F 4, m′

J = 0〉 transition at a
wavelength of 1573 nm. For this transition, the M1 matrix
element vanishes while the E2 matrix element does not. With
the same intensity and polarization as in Fig. 1, but propa-
gating along the z axis, the Rabi frequency for such an E2
transition is 214(13) Hz. For a detailed derivation of these
Rabi frequencies, see the Supplemental Material [18].

Neutral-atom optical clocks often use optical lattice poten-
tials to confine atoms, allowing for a long interrogation time.
In order to avoid imposing large differential ac Stark shifts
between the upper and lower states of the clock transition, it is
necessary to use lattice light which is at a “magic wavelength,”
at which the dynamic polarizabilities of the lower and upper
clock states are identical [20]. In Fig. 2 and Table II, we
report several magic wavelengths for the |a3F4, mJ = 0〉 →
|a5F5, m′

J = 0〉 clock transition. As with most states in Ti,
the clock states experience significant vector and tensor ac
Stark shifts [13], owing to their nonzero angular momentum
and Ti’s complex spectrum. To account for these shifts, we

FIG. 2. The scalar dynamic polarizability of the mJ = 0 sub-
levels of the a3F4 (red) and a5F5 (blue) states in Ti from 1100 to
750 nm as calculated by the sum-over-states method. The angle
between the polarization and the B field direction is set to 90◦. The
locations of magic wavelengths considered in the rest of this work
are circled.
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TABLE II. Data for the magic wavelengths for the a3F4 to a5F5 clock transition. Wavelengths are given in units of nm, and polarizabilities
are given in atomic units.

λmagic α αS
a3F4

αS
a5F5

αV
a3F4

αV
a5F5

αT
a3F4

αT
a5F5

1036.6+0.4
−0.4 116(10) 115(3) 66(12) −2(2) −470(30) 4(4) 154(8)

887+4
−4 122(5) 121(4) 159.3(2.6) −3(2) −104(5) 5(4) −111(3)

789+5
−2.2 129(5) 127(4) 127.1(1.4) −4(3) 127(4) 5(4) 6.5(1.6)

781+3
−7 130(5) 128(4) 126.3(1.3) −4(3) 138(3) 6(4) 11.5(1.5)

consider the specific lattice configuration shown in Fig. 1.
Here, a magnetic field applied in the z direction imposes a
linear Zeeman shift and defines the quantization direction. All
lattice light is linearly polarized in the transverse x-y plane. In
this configuration, the clock transition is shifted only by the
differential scalar and tensor ac Stark effects (the vector shift
is zero on the mJ = m′

J = 0 sublevels). The sum of the scalar
and tensor dynamic polarizabilities (αS

i and αT
i , respectively)

on the transition is then given by

�α = αS
a5F5

− αS
a3F4

+ 1

2

(
2

3
αT

a5F5
− 5

7
αT

a3F4

)
. (1)

At the identified magic wavelengths, the net transition ac Stark
shift is zero. For a more detailed description of the ac Stark
shifts, see the Supplemental Material [18].

Calculations of the polarizabilities were performed by
two methods. First, the sum-over-states method was used to
roughly calculate polarizabilities over a wide range of fre-
quencies. The 76 transitions with the largest contributions to
dc polarizability were used in the case of the a3F4 states, while
51 transitions were used in the case of the a5F5 states. Once
promising candidates for magic wavelengths were found,
we performed direct dynamical polarizability calculations to
identify the location of the magic wavelengths more precisely.
Direct computations for two of the magic wavelengths allow
us to predict the remaining values accurately. Previously, the
direct computation method was only used for divalent systems
such as Sr [21,22], Mg [23], Yb [24,25], Cd [26], or Tm [27].

For more complex atoms, the rapidly increasing number
of relevant configurations makes such a direct computation
intractable. Here, we apply instead a truncation approxima-
tion: We order the configurations by weight to select the most
important ones and then start removing configurations while
checking the accuracy of the energies and relevant matrix ele-
ments. This procedure drastically reduces the number of Slater
determinants required to maintain numerical accuracy. Further
details on our method are found in the Supplemental Material
[18]. We emphasize that our approach is not specific to Ti;
it should allow for the computation of polarizabilities, magic
wavelengths, and other atomic properties for other atoms with
a complex electronic structure.

Using the lattice configuration and magic wavelength de-
scribed above not only eliminates the differential light shift,
but also protects against the effects of dipole-dipole interac-
tions between Ti atoms. These effects are not present in lattice
clocks of Sr, Yb, or Hg as those clocks operate on transitions
between nonmagnetic J = 0 states. In contrast, the magnetic
moments of the proposed Ti clock states are both large, with
μa3F4

= 5.00μB and μa5F5
= 7.05μB.

There are three processes associated with the dipole-dipole
interaction that we consider: dipolar relaxation, elastic spin-
spin energy shifts, and inelastic spin-spin mixing [28]. Dipolar
relaxation is the process by which Zeeman energy is converted
to kinetic energy, depleting atoms from the clock states. Such
relaxation can be suppressed for atoms trapped in a deep
three-dimensional (3D) optical lattice by ensuring the band
gap far exceeds the Zeeman energy [29]. The band energy
scale in a lattice is set by the lattice recoil energy Er =
h2/(8ma2), where a is the lattice spacing. For a 48Ti atom in
the magic-wavelength lattice described above, the recoil en-
ergy is Er = h × 6.8 kHz. 3D optical lattice clocks typically
use deep lattices to suppress tunneling and atom-atom contact
interactions. As of 2019, the fermionic Sr 3D lattice clock at
JILA operated at a lattice depth of V0 = 80Er [30]. In deep
lattices, the gap above the ground band is Eg ≈ 2

√
V0Er . In

the case of Ti, a comparable lattice operating at the magic
wavelength near 781 nm could be achieved by intersecting
six 3.5 W beams with waists of 0.1 mm. This would give a
lattice depth of V0 ≈ 79Er = h × 540 kHz and band gap of
Eg ≈ 18Er = h × 120 kHz. Setting the Zeeman energy below
this band gap requires the ambient magnetic field be well
below B ∼ Eg/μB = 60 mG.

The second two processes associated with the dipole-
dipole interaction are captured in the so-called secular
Hamiltonian, which is obtained by time-averaging the dipole-
dipole interaction over a Larmor precession:

Hdd = μ0μ
2
B

8π

∑
〈i, j〉

gJi gJj

r3
i j

(1 − 3 cos2 θi j )

×
(

Jz
i Jz

j − 1

4
(J+

i J−
j + J−

i J+
j )

)
. (2)

Here, i and j label two atoms held at different sites of a lattice,
separated by a distance vector of length ri j and polar angle θi j

with respect to the quantization axis. gJi is the Landé g factor
of the atom at lattice site i.

The elastic spin-spin energy shift corresponds to the Jz
i Jz

j
term in the secular Hamiltonian. In theory, this term generates
shifts to the transition frequency between atomic states with
nonzero angular momenta. However, for a clock transition
between mJ = m′

J = 0 magnetic sublevels, the shift is zero
and can be ignored.

The final process is the spin-mixing interaction, which
corresponds to the J+

i J−
j + J−

i J+
j term in the Hamilto-

nian. This term couples atoms in an initial two-body state
|m(1)

J = 0, m(2)
J = 0〉 to final states |m(1)

J = ±n, m(2)
J = ∓n〉,

n ∈ {1, . . . , J}. If not controlled, this would lead to a
rapid loss of population from the mJ = 0 clock states. The
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maximal strength of the coupling is h̄�SM = μ0μ
2
Bg2

JJ (J +
1)

√
2/16π (λ/2)3. In a λ = 781 nm optical lattice, this gives

spin mixing strengths of h × 2.4 Hz (4.6 Hz) within the
lower (upper) clock state manifold. Spin mixing between
atoms in the upper and lower clock states is energetically
suppressed because of the significant differential Zeeman
splitting. For a 30 mG magnetic field, the splitting between
the |m(1)

J = 0, m′(2)
J = 0〉 and |m(1)

J = ±1, m′(2)
J = ∓1〉 states

is h × 6.7 kHz.
In the case where both atoms occupy either the upper

or lower clock state, spin mixing is suppressed by the ten-
sor ac Stark shift imparted by the optical lattice light. The
tensor light shift creates an energy splitting between the
|m(1)

J = 0, m(2)
J = 0〉 and |m(1)

J = ±n, m(2)
J = ∓n〉 two-atom

states. Using the same optical lattice configuration described
above, the splitting between the |m(1)

J = 0, m(2)
J = 0〉 and

|m(1)
J = ±1, m(2)

J = ∓1〉 states is �Etens = h × 4(2) kHz [h ×
4.8(6) kHz] within the lower (upper) clock state manifold.
Since the differential Zeeman splitting and �Etens are much
larger than h̄�SM, spin mixing is highly suppressed.

In this regime, spin mixing enters as a second-order per-
turbative effect. The |m(1)

J = 0, m(2)
J = 0〉 two-atom states in

both the lower and upper clock manifolds are weakly coupled
to the corresponding |m(1)

J = ±1, m(2)
J = ∓1〉 states by �SM.

Both clock states experience an energy shift on the order of
∼�2

SM/�Etens. The difference between the shifts leads to a
shift of the clock frequency, while the sum of the shifts leads
to decoherence between the clock states. For two atoms, the
shift is ∼3 mHz and the rate of decoherence is ∼6 mHz.
For more discussion of the dipole-dipole interaction, see the
Supplemental Material [18].

One complication in our scheme of using tensor light shifts
to combat magnetic dipole-dipole interactions is that devia-
tions from the lattice-light polarization shown in Fig. 1 will
introduce clock frequency shifts. Considering the example
parameters from above, a 0.5◦ tilt of the linear polarization
away from the desired orientation would introduce a ∼4 Hz
overall shift in the clock transition frequency, and a much
smaller differential shift spatially across the lattice owing to a
variation in the light intensity of the Gaussian-focused beams.
Standard methods for reducing and calibrating this residual
shift, including measuring the variation of the clock frequency
with lattice-light intensity, should allow the systematic uncer-
tainty to be reduced to an acceptable level [30,31].

Additional terms in the light shift, such as the hyperpolar-
izability and the M1 and E2 polarizabilities would also need
to be taken into account, but their effects are small (below
10−18 levels in Sr [32–34]), and their consideration is beyond
the scope of this Letter.

Another significant systematic uncertainty in optical clocks
is the blackbody radiation (BBR) shift, which has been the
subject of significant past investigation [21,35]. We model the
BBR shift for the Ti clock line as

�BBR = −κ
(
α0

a5F5
− α0

a3F4

)( T

300

)4

(1 + η), (3)

where κ = 1
2 (831.9[V/m])2 is a constant of proportionality,

α0
i is the dc scalar polarizability of the i state of Ti, T is

the thermal background temperature measured in K, and η

is a small dynamical correction omitted in the present work.
The same CI+all-order approach is used to compute dc and
dynamic polarizabilities. In this case, we find that α0

a5F5
=

128.53 a.u. and α0
a3F4

= 100.39 a.u., which leads to �BBR =
−0.24 Hz at T = 300 K. This value is approximately an order
of magnitude lower than that in Sr, where the BBR shift is
known to be −2.2789 Hz [36].

The final systematic uncertainty that we consider is the
quadratic Zeeman shift (QZS). For the 46,48,50Ti isotopes, the
effect will be small since it will arise only from the mixing
of neighboring fine-structure states, whereas in atoms with
nonzero nuclear spin, a stronger QZS arises from the mixing
of hyperfine states. For the states in the Ti clock, the QZS
of the mJ = 0 sublevels are �

(a3F4 )
QZS = 0.129[Hz/G2]B2 and

�
(a5F5 )
QZS = 0.434[Hz/G2]B2, and the QZS on the transition is

thus �QZS = 0.305[Hz/G2]B2. Given that a Ti clock must
operate at a magnetic field well below 60 mG to suppress
dipolar relaxation, the QZS of the clock transition will be
below 1 mHz. This is approximately an order of magnitude
lower than the QZS that is present in Sr optical lattice clocks,
of almost 10 mHz [30,31].

Altogether, we have shown that laser-cooled Ti is an attrac-
tive choice for realizing a telecommunications-band optical
atomic clock. Operating Ti clocks on several of the avail-
able telecommunications-band optical transitions would allow
for clock comparisons as a powerful method for identify-
ing and reducing systematic corrections. We have advanced
atomic structure calculations to determine the critical proper-
ties of such clocks, including identifying magic wavelengths
for optical trapping, estimating clock transition widths and
line strengths, and determining that the BBR shift for Ti
clock transitions is an order of magnitude smaller than
the shift that dominates current Sr-based clock systematics
[30,31]. We also describe potential effects of, and mitigation
measures against, magnetic dipole-dipole interactions. These
measures are relevant to other potential applications of dipole-
interacting atoms and molecules for precision measurement.
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