Lectures #17 - 18

Scattering
Method of partial waves.
Calculation of phase shifts

Scattering of two identical particles

Chapter 10, pages 393-398, Jasprit Singh, Quantum Mechanics

Chapter 13, pages 595-608, Bransden & Joachain, Quantum
Mechanics




How to calculate differential
Cross section?

Step 1. Write the expression for the wave function ¥ (r) .

Step 2. Determine the asymptotic behavior of this wave function for r—oo.

k- 0, ikr
Step 3. Compare it with ¥ (r) —=5— kT 4 At ¢)ek :
r
Step 4. Determine f(6,9) from this comparison
Step 5. Calculate differential cross section usmg — \f(é? ¢)\

Note: this general procedure is used to derive formula for the
differential cross section both using Born approximation and
method of partial waves.




Step 1. Write the expression for the wave function i/ (r) .

Schrodinger equation ... again

_h_vzgy(r) +V(r)y(r)=Ey(r)
2m

For the spherically symmetric potentials, the wave function can be
written in terms of spherical harmonics Y, (6,9) .

2L+1)(l—m)!
A7l +m)!

Y, (6,0)=(-D" { } P"(cos ) e™

If we chose the z axes in the direction of the incident beam of
particle there will be no dependence on the angle ¢. Therefore, m=0.

(21 +1)
47

Y, (0)= { } B (cos0)



Step 1. Write the expression for the wave function i/ (r) .

Schrodinger equation ... again

Therefore, we can write our wave function as an expansion

v, (r) = i(zl +1)i' R (r)P,(cos 6)

where [t"term is called [t partial wave. The radial function R satisfies
the radial Schrodinger equation (see the derivation in the Hydrogen atom
lecture).
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Step 2. Determine the asymptotic behavior of this wave function for r—oo .

Solutions beyond the range of the potential

We suppose that the potential is negligible at r>a. Then, we can neglect
the V(r) term in our equation

{d_2+g d I+

2 2
dr r dr r

+k2}Rl(r):O r>a

The solutions of this equation are given by:

R (r)=B,, j,(kr)+C n,(kr)

Spherical Bessel Spherical Neumann
functions functions




Step 2. Determine the asymptotic behavior of this wave function for r—oo .

Asymptotic behavior at r—

Asymptotic form of the Bessel functions:

y—>00 J,(kr) ~ isin(kr—l—ﬂ.j ; n,(kr) ~ —icos(kr—l—ﬂj
kr 2 2

kr
Rl(r) = Bkl+ Ckl
1 . ¥4 ¥4
R (r)— E{Bkl sin (kr —7j —C,, cos (kr — Ej}

R(r)%i\/B2+C2 4 By sin kr—l—ﬂ. + G cos kr—l—ﬂ-
[ k]" kl kl > > 2 > > 2
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Step 2. Determine the asymptotic behavior of this wave function for r—oo .

R,(r) = i \/Bkzl + Ckzl ) By Sin(kr—l—ﬂ.j + —Cu
M L 2)" B+
y !
Ay coS 0, sin J,
A
R,(r) = —"-1cos g Sin(kl’ —l—ﬂ) +sin O, Cos(kr—l—ﬂj
kr o) )
Rl(}") %ﬂsin(kr_l_ﬂ-_i_é‘lj
kr )
where A, = \/ B,fl + C,fl and O, = tan”! —;kl
kl

9, is called a phase shift for the 1" partial wave

Asymptotic behavior at r—

Vo
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Step 3. Compare it with  y(r)——=z— " +

ow to calculate a scattering amplitude?

v, (r) = i(zz +1)i' R (r)P,(cos 8)

We substitute the asymptotic expression for the radial function R to
this expansion: A I

—>00 wk(r)%2(21+1)il—sm(kr—7+5,jPl(cosﬁ)
[=0

kr
f (9) eikr

r

and compare it with  w/(r)——==— €57 +

Clearly, we need to transform this expression first. We use the expansion
e*T =" (21+1)i' j,(kr)P(cos 6).
[=0

For large r it becomes o KT %Z(Zl+1) ilkisin(kr—%ljl),(cosﬁ)
1=0 r

where we used the asymptotic behavior of the spherical Bessel functions.



f(H) eikr-

Step 3. Compare it with  y(r)——=z— " +

Next, we match both of the expressions:

v, (r) %i(Zl+1)zl%sm(kr—%+5jP(cosﬁ)

r

r

Il
. (r) > Z(Zl+1)z k—sin(kr—%ljp(cosg)+ f(O) ikr
r

To obtain
Z(ZZH)ZZism(kr—%ﬂ+5jP(cos¢9)
I"
Z 21+1)l _Sin(kr_ﬂjP(COSH)-F f(e) eikr
[=0 r 2 12



Step 3. More transformations ...

First, we write out sine functions as exponentials:

% . Iz
Z (2l " 1) ll Alk ( (kr—7+5l] B e—l(kr—?+5lj ] Pl (COS 9)

2ikr

S [;‘(kré’)_ei(krﬂj Peosty+ 1O o

(17,5 (iz_
Ay el( . jP(cosé?) —e Z(Zl+1)zl Ay e(2 (Slji}(cosé?)

2ikr 2ikr

¢ Z(Zl+1)zl

il il
Z(Zl+1)z Le 2 P(cosB) —e Z(21+1)le _1 P.(cos @) + /" f(0)

1=0 2ikr 1=0 2ikr r

Next, we match the coefficients of e?* and e,



Step 3. Even more transformations ...
Step 4. Determine f(6) from this comparison.

S 241 i ei(_7+5jP(cos(9) Z(2l+1)z L P(cosg)+ 7

=0 2ikr 2ikr r

it Z(Zl+1)ll Ay 6(7 jP(COSQ) Z(Zl+l)zemLP(COS6’)

2ikr 2ikr

. : . . o)
The second equation gives the coefficients A,;: Ay =€
We substitute this expression into the first equation and obtain: iz

Note: i'le 2 =1

I < 2id)
f(@):ik;(zzﬂ)(e % —1) P,(cos 6)

Therefore, the problem of calculating the differential cross section
Is reduced to the calculation of the phase shifts.




d
Step 5. Calculate differential cross section using d—g =|f(9)|

The differential cross section is given by
2

Rnbuip ‘f(g)‘z = % 2(21 +1) sind, P (cos6)
[=0

= iz D> > Q21+ 21'+1) €7 sind, sind,. P (cos @) P, (cos 6)

1=0 1'=0

The total cross section is given by

O =

tot

J‘d_o-dg _2—71.22(21+1) (21'+1) ) sing, sino, J‘d(cosﬁ)P (cos@)P.(cosB)

df2 k* =515
Using the orthogonality condition jd(cosH)Pl (c0s O)P.(cos 6) = 2 5
for Legendre polynomials 21 +1

. . AT & :
we obtain for the total cross section o, = FZ(ZZ +1) sin’d



Optical theorem

The scattering amplitude for 6=0 is equal to
1 (e}

f(0=0) =;Z(21+1) e’ sin 6, B (1)
1=0 'ZT

[=0 [=0

Im[ f(@=0)]= Im{%Z(Zl +1) ¢ sin 0, } = %Z(Zl +1)sin” §,
If we compare this expression with the total cross section

47 & :
o, :k—f2(2l+1) sin’d,
[=0

we obtain

o, = 477[Im[f(9 =0)] < Optical theorem




How to calculate phase shiits?

To calculate the phase shifts the radial function is calculated for regions
r<a (where potential is significant).

Then, the boundary condition is applied at r=a:
1dR|_1dR
R dr| . R dr
Using the formula for the wave function at » > a we obtain
k| j, '(ka)cos 8, —n, '(ka)sin &, ]

J; (ka)cos o, —n, (ka)sin o,

=7

r=a

r=a

=7

Therefore, the phase shift can be calculated using tan d, = k j, '(ka)—7y, j(ka)
if the solution R, is known in the region where kn, (ka) =y, n(ka)
potential is significant.




Scattering of two identical particles in
the center-of-mass frame

Detector (b) Detector

S

Particle 1 is scattered in Particle 1 is scattered in
the direction (6,0) the direction (n—0,7t+0)

Since the particles are identical collisional processes (a) and (b)
can not be distinguished. In center-of-mass system

2
{_§_v2 +V(r):|w(r) =Ew(r) Wwhereu=m/2is the reduced mass, r=r-r.
7



Scattering of two identical particles
spinless bosons

(a) Detector (b) Detector
1 2
1 0
1 0 R .

<
2

Particle 1 is scattered in Particle 1 is scattered in
the direction (6,0) the direction (nm—0,7t+0¢)

In classical mechanics the differential cross section for scattering in the
direction (6,0) would be simply the sum of differential cross sections for observation

of particles 1 and 2 in that direction. If the same were true in quantum
mechanics we would obtain the “classical result”

do, 2 B
o =|f (0,7 +|f(x—6,9+7)

f(Ha ¢) eik}’

r

2 ikr
9

W(r) —>00 > € +




Scattering of two identical particles
spinless bosons

(a) Detector (b) Detector
1 2
1 0
1) 0 . . .
2 2

Particle 1 is scattered in Particle 1 is scattered in
the direction (6,0) the direction (nm—0,7t+0¢)

In classical mechanics the differential cross section for scattering in the
direction (6,0) would be simply the sum of differential cross sections for observation

of particles 1 and 2 in that direction. If the same were true in quantum
mechanics we would obtain the “classical result”

f(Ha ¢) eik}’

r

do
7K9)

2 ikr
9

W(r) —>00 > € +

=|f@.DE T—6,0+7)




Scattering of two identical particles:
spinless bosons

Ci%z —|f O +f(r—0.p+1) < incorrect result

Spinless bosons: wave function must be symmetric under r, <> r, :r — —T .
Clearly, the function ¥(r) which satisfies boundary condition

f(9> ¢) eikr

r

o
Y, —=z— ¢ +

IS not symmetric under r — - r interchange. However, we can make a
symmetric combination ¥ (r) =y, (r)+y, (-r); ¥ (r)=y (-r).
The corresponding asymptotic form is

k
o kT

) —=m— (T +e )+ [f(0.0)+ f(x-6.4+7)] -

since r >-r: (r,0,0) > (r,71—60,0+7)



Scattering of two identical particles:
spinless bosons

Therefore, the differential cross section is

do _
Q.
=|f@0.7) +|f(x-6.9+7) +2Re| f(O.7)f (x—0.4+7) ]

fO.m)+ f(x—0,9+7)

and the total cross section is

G, = || £ (0. 1)+ f(x—6,0+7) dQ



Scattering of two identical
spin 2 fermions

Note: we assume that particles interact through central forces.
Total wave function must be antisymmetric with respect of interchanging

two particles.

Case 1: Singlet state, S=0 = the spatial wave function must be
symmetric. The corresponding scattering amplitude is

do,
d Q2

Case 2: Triplet state, S=1 = the spatial wave function must be
antisymmetric. The corresponding scattering amplitude is

£.O)+ f.(m-0)

dO't_ B PN
~ =1~ fz-0)




Scattering of two identical
spin 2 fermions

If the spins of both particles are randomly oriented the differential
cross section is given by

dO' 1 do, 3d0'
dQ 4d£2 4dQ

+§\ﬁ<9)—ﬁ<z—9)\2

If the interaction is spin-independent, i.e. f(8) = f,(6) = f,(6)
——=|f@Of +|f(x-6) —Re| £(O)f (x-6)]

Again, the result is different from the “classical” result.



