
Lectures #17 - 18 

Scattering

Method of partial waves.

Calculation of phase shifts

Scattering of two identical particles

Chapter 10, pages 393-398, Jasprit Singh, Quantum Mechanics

Chapter 13, pages 595-608, Bransden & Joachain, Quantum 

Mechanics



Step 1. Write the expression for the wave function           .       

Step 2. Determine the asymptotic behavior of this wave function for             . 

Step 3. Compare it with                                                                .      

Step 4. Determine                from this comparison.

Step 5. Calculate differential cross section using                             .     

How to calculate differential 

cross section?
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Note: this general procedure is used to derive formula for the 

differential cross section both using Born approximation and 

method of partial waves. 



Schrödinger equation ... again
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For the spherically symmetric potentials, the wave function can be 

written in terms of spherical harmonics               . 

If we chose the z axes in the direction of the incident beam of 
particle there will be no dependence on the angle φ. Therefore, m=0.
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Step 1. Write the expression for the wave function          .( )ψ r



Therefore, we can write our wave function as an expansion 

where l th term is called l th partial wave. The radial function R satisfies

the radial Schrödinger equation (see the derivation in the Hydrogen atom

lecture).
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Step 1. Write the expression for the wave function          .( )ψ r



Solutions beyond the range of the potential

We suppose that the potential is negligible at r>a. Then, we can neglect

the V(r) term in our equation

The solutions of this equation are given by:
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Spherical Bessel

functions 
Spherical Neumann

functions 

Step 2. Determine the asymptotic behavior of this wave function for             . r→∞



Asymptotic behavior at r→∞

r→∞

Asymptotic form of the Bessel functions: 
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Step 2. Determine the asymptotic behavior of this wave function for             . r→∞



Asymptotic behavior at r→∞
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is called a phase shift for the l th partial wave

Step 2. Determine the asymptotic behavior of this wave function for             . r→∞



How to calculate a scattering amplitude?

r→∞
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We substitute the asymptotic expression for the radial function R to 

this expansion: 

and compare it with                                                                .

Clearly, we need to transform this expression first. We use the expansion       
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For large r it becomes

where we used the asymptotic behavior of the spherical Bessel functions.
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Next, we match both of the expressions:
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Step 3. More transformations ...
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First, we write out sine functions as exponentials:
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Next, we match the coefficients of eikr and e-ikr.



Step 3. Even more transformations ...

Step 4. Determine          from this comparison.

2 2

0 0

1
 (2 1) (cos ) = (2 1) (cos ) 

2 2
:

l ili l
l

l

i k

l

kr l l
l l

A
l i e P l i e P

ikr ik
e

r

π πδ

θ θ
 ∞ ∞− 

− 

= =

+ + 

The second equation gives the coefficients A
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We substitute this expression into the first equation and obtain:
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Therefore, the problem of calculating the differential cross section 

is reduced to the calculation of the phase shifts. 
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Step 5. Calculate differential cross section using                          .     

The differential cross section is given by

The total cross section is given by
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Using the orthogonality condition

for Legendre polynomials 

we obtain for the total cross section                                       .
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Optical theorem

The scattering amplitude for θ=0 is equal to
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If we compare this expression with the total cross section

we obtain
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How to calculate phase shifts?

To calculate the phase shifts the radial function is calculated for regions
r<a (where potential is significant). 

Then, the boundary condition is applied at r=a:
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Using the formula for the wave function at we obtain
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Therefore, the phase shift can be calculated using
if the solution R

l
is known in the region where

potential is significant. 



Scattering of two identical particles in 

the center-of-mass frame
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Since the particles are identical collisional processes (a) and (b) 

can not be distinguished. In center-of-mass system

(a) (b)

Particle 1 is scattered in 

the direction (θ,φ)

Particle 1 is scattered in 

the direction (π−θ,π+φ)
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where µ=m/2 is the reduced mass, r=r1-r2.



Scattering of two identical particles

spinless bosons
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(a) (b)

Particle 1 is scattered in 

the direction (θ,φ)

Particle 1 is scattered in 

the direction (π−θ,π+φ)

In classical mechanics the differential cross section for scattering in the 

direction (θ,φ) would be simply the sum of differential cross sections for observation
of particles 1 and 2 in that direction. If  the same were true in quantum

mechanics we would obtain the “classical result”
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Scattering of two identical particles

spinless bosons
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(a) (b)

Particle 1 is scattered in 

the direction (θ,φ)

Particle 1 is scattered in 

the direction (π−θ,π+φ)

In classical mechanics the differential cross section for scattering in the 

direction (θ,φ) would be simply the sum of differential cross sections for observation
of particles 1 and 2 in that direction. If  the same were true in quantum

mechanics we would obtain the “classical result”
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Scattering of two identical particles:

spinless bosons

2 2
( , ) ( , )   

 

cl
d

f f
d

σ
θ π π θ φ π= + − +

Ω
incorrect result

Spinless bosons: wave function must be symmetric under                           .
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Scattering of two identical particles:

spinless bosons
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Therefore, the differential cross section is  

and the total cross section is 
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Scattering of two identical

spin ½ fermions 

Case 1: Singlet state, S=0  the spatial wave function must be 
symmetric. The corresponding scattering amplitude is

Note: we assume that particles interact through central forces.

Total wave function must be antisymmetric with respect of interchanging 

two particles.
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Case 2: Triplet state, S=1  the spatial wave function must be 
antisymmetric. The corresponding  scattering amplitude is
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Scattering of two identical

spin ½ fermions 

If the spins of both particles are randomly oriented the differential 

cross section is given by 
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Again, the result is different from the “classical” result. 


