Lectures #15-16

Scattering. Differential cross section.

Born approximation. Validity of the Born
approximation.

Solving scattering problems: examples.

Chapter 10, pages 378-393, Jasprit Singh, Quantum Mechanics

Chapter 13, pages 587-595, 608-620, Bransden & Joachain,
Quantum Mechanics




Scattering: short-range potential
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Problem: calculate the probability that the particle is scattered into a
small solid angle dQ in the direction 6,0.




Differential cross section

Problem: calculate the probability that the particle is scattered
iInto a small solid angle dQ in the direction 6,0.
How? By solving Schrédinger equation ... again.

This probability is expressed in terms of differential cross section

do . T :
—— = number of particles scattered per unit time into d€2 in the

direction 8,0/ F ( flux of the incident particles) d£2
The total cross section

o,, = total number of particles scattered per second / F
s obtained as o,,, = [~ 19 16 = j dg j d0sin9 9%
Q dQ

Note: the flux is a number of particles the unlt tlme per unit area so

do
the dimensions of both 0 and o, , are those of the area.



Schrodinger equation ... again

Case 1. Free particles: well outside the _%V y(r)=Ey(r)
scattering potential range. | 2212
Hamiltonian: H, E=—mv* =

2 2m
(V24K )w(x) =0
2m

Case 2. In the presence qf the (V2 +k2)w(r) _ (_Zv(r)jw(r)
scattering potential. h

Hamiltonian: H=H,+V ) Ulr) ’

(V2 +£2 )y @) =Ump )




Wave function at large r &
differential cross section

Outgoing
\«— spherical wave
4 (1.9 ik
r

Note: potential must decrease faster than 1/rwith r—oo .
f: scattering amplitude

}

Incident beam of particles
(plane wave)

o 2
Differential cross section is given by d_Q - ‘f(e’ ¢)‘

k. =k _: elastic scattering

mn out



How to calculate differential
Cross section?

1. Write the expression for the wave function ¥ (r).

2. Determine the asymptotic behavior of this wave function for y—oo .

- 9, .
3. Compare it with w(r)——==— €'*" + 1(8.9) jiwr
r
4. Determine f(6,9) from this comparison.
. . . . do 2
5. Calculate differential cross section using e 6.0 .

Note: this general procedure is used to derive formula for the
differential cross section both using Born approximation and
method of partial waves.




Green’s function

The equation (V*+k° )y (r) =U (@)W (r) can be solved using

Green’s function method:
v, (1) = 6, (1) + [ G(r,r ) U (r Yy, (') dr,
where #(r) is the solution of the free particle equation (V> +k”)@(r)=0
and G(r,r') is a Green'’s function corresponding to
(V?+£7)G@r,r)=6(r-r").

Since we want to obtain the solution which has an asymptotic form

P ———s T 4 f(0.9) ikr :> () =e/5T |

r




i Green’s function

¥, (1) = 4, (1) + [ G, Y U (0 Y, (r) dr’

ik‘ r—r" Note: see pages 609-613 of
1 e :: > Bransden & Joachain QM book
47 |r—r| for derivation

zk‘r r‘

Vi) =4, (0 - j AL

G(r,r')y=-—




Asymptotic behavior of y(r) r—oo

r>>r

lr-r|
U r
a=Z(r,r")
v, (r) €

-

e

ik‘ r-r'

l‘—l‘"=\/r2+2r-l"+r'2 ~r—r-r
r—r"zr—r'cos(r,r'):r—r'cosa'

ik(r—r'cosa ikr —ikr'cosa
~ o'k ) = pthr =ik

ikr ~iK'r
=™ e

where k'=kcosa = kr pointsinthe
direction of the scattering particle

ik‘ r-r'
e

. elkre—z k'r

Uy, (r')dr’

T

~
I



i Differential cross-section

Matching
kr —ik'r'
ik 1 e , o
V(D)= [ Uy () dr

K eik?” 1 K
=T+ {— J.e_’ "U(r"y, (r')dr '}
4r

with ‘ ‘
ikr

W) ———> X7 + Z— (6.0

r

we obtain
£(0.0)=——— [ ™M U@y, () dr
47




Born approximation

1

F(6,.0)=—— [ X TU @y, () dr'= —ﬁ% Ulyi)

A7

Main idea: use perturbation theory to approximate ¥, (r).
The scattering wave function is expanded in
powers of the interaction potential.

Born series:

)= (r) =€~

|
1
v (1) = g (N + [ G r) Uy (r) dr’

v (1) =4, (N + [ G, Uy (e dr’



i Born approximation

¥, (1) = 4, (N + [ Gr,e ) U (), (r) dr

+ : Gr,r)U@)Gx',r"Ur"g (r")drdr"+

We substitute this expansion into the formula for the scattering amplitude

1

f<9,¢>:—ﬂ<¢.«\U\wTk>

£(6,0) = 1<¢k U +UGU +UGUGU +..|¢,)

First term of this series is (first) Born 15(8,0) = < ‘U‘¢k>
approximation to the scattering amplitude:




Born approximation:
i just some transformations

1 1 20 ¢ —ikr oo K e
fB(0,¢):_E<¢k"U‘¢k>:_E? e k'r V(r)elkrdr
) _#J TV dr' =~ zmhz [T vy dr

q=k-k'

(k—k') =k>+(k")* —2kk'cos(k, k)  6=2(KkkK)
=2k*(1—cos8)
0

=2k sin—
1 2



Born approximation:
central potentials V(r)

fP(6,0)=- eIV (r')dr'

In the case of central potential V(r) we can
—> integrate over 6’ and ¢'.
Yy We choose axis z' to be in the direction of q.

f G9¢T——2’hzid'(f);Td¢T$n9%W”%“9L%r3

q=k-k'
.0 __mq W:__ 2sin(gr)
q=2ksin == Idue jdr V=
2
0=/LKk,k" — ZZL u=cosé'
q




Born approximation: central potential V(r)
How to solve problems: Example 1

Problem: elastic nucleon scattering from heavy nucleus can be
represented by a potential

-V, r<R
V(r)= V,>0
O r>R

Calculate the differential cross section in the lowest order in V.

Solufion: 3 ] I ,
=—— |4 ~Z | B
f (6,0) o j rrV(r)sin(gr) 0 ‘f (6’,¢)‘

£5(6,0)=V, 24 jdrr sin(gr) =V, 2‘“{ [sm(qR) chos(qR)]}
qh "qh’ | q°

6

do 4,u VO [sin(gR) — chos(qR)] q:2ksin5

Q.

U : reducedmass



Born approximation: central potential V(r)
How to solve problems: Example 2

Problem: a particle of mass m is scattered by a potential
V(ry=V,e " a>0

1. Calculate the differential cross section in the lowest order in V.
2. Calculate the total cross section.

3. Define the criteria for the validity of Born approximation

Solution: 1. f°(, ¢)——q—J-drr{Ve }sm(qr)

3
> assume(a>0); 0 —— 1%
> Q:=simplify(int(r*exp(-r/a)*sin(q*r),r=0...infinity)); (1+¢%a~)
> DQ=(@mVIh 2y A e,
i 4
2y72 .6 h4(1+q2a~2)
d—o-=[DQ]= lom™V,; a

aQ i (l+da’) <



Born approximation: central potentials V(r)
How to solve problems: Example 2

Solutfion: 2. The total cross-section is given by the integral

o x 2v72,.6 % -
o = J‘d_o' 40 = J.d¢_‘.d6?sinl9 do _16m 2/0 2 27[J-d6?sin0(1+4k2a2 sin(6/2)) 4
d Q2 5 0 df2 L 0
q =2k sing > :=2"k*sin(theta/2);
2 :
> DQ;

> R:=2*Pi*int(DQ*sin(theta),theta=0...Pi);
> factor(R);

64 m> Va0 3r12k% a2 116k 0t

Oror = 4 N
3hT (1+4k"a~")




Validity of the Born approximation

This method is based on treating the scattering potential as a perturbation.

Therefore, for this approach to be valid, the correction to the wave

function which is introduced by a potential (our first order correction Ay, (r))
must be small in comparison to the wave function in the

absence of the potential (in our case ¥, (r) ).

Using this statement as a guide we use the following criteria for the
validity of the Born approximation:

Ay, (0)
A (0)

<<1




Validity of the Born approximation

(1)
We need to evaluate this expression: Awok)(gi) <<1
=" =y 0)=1
zk‘r r ‘
Ay (r) = j Uy, (r')dr'
r-r]

1 elkl’"
Ay (0)=— j U e'®T dr'
47 r'

ikr' o
m je ' Vr)e™ T dr'|<<1
r

27h?

(0) (O)

Ay (0)|




Validity of the Born approximation:
central potential

(1) ikr' o
AV, O)_ | _m je ' V(r)e™T dr'|<<1
r

v ©0) | | 271

Now we consider this condition for the case of the central potential

ikr'
m e k-r'
[ —VvEye T dr =
r

27h*

| eikr'cos@'

. e
sin @'

e - 2sin(kr )

kr'

2m | j dr’ lkrV(r') sin(kr")

Validity of the Born approximation

2m ¢ ikr :
it - 1
condition for the central potential Ih? ! dr eV (r)sin(kr)| <<




Validity of the Born approximation
How to solve problems: back to Example 2

Problem: a particle of mass m is scattered by a potential
V(ry=V,e " a>0

3. Define the criteria for the validity of the Born approximation

Solution: 3. |2mV|
kh’

jdr M e sin(kr)| << 1
0

2m Va~2

> assume(k>0): , > 2 °
> assume(a>0); ot
> (2*m*V/(k*hA2))*abs(int(exp(I*k*r)*exp(-r/a)*sin(k*r),r=0...infinity));

2m ‘VO‘ a’

<<1
m2 1+ 4k2a’




Validity of the Born approximation
How to solve problems: back to Example 2

Zm‘VO‘ a’
nP 1 +4k*a’

<< 1

2
1.Low k limit (slow particles) ka<<1 — |V, |<<

2
2ma

2
2.High k limit (fast particles) ka >>1 — \VO\<<M
ma

Note that the validity of the Born approximationis considerably
h* (ka)

2
ma

extended in this case as |V, | << and ka >>1

(compare with the other condition)



Validity of the Born approximation

General condition: 1Ay I<<1y™ |

The results derived above may also be obtained for an arbitrary potential if
we take the |V,| to be the average value of the potential and a to be the
range over which the potential is significant.

Case 1. Potential is sufficiently weak or sufficiently localized (or the particle
speed is slow enough). i r-r' 1
e =

V")l m a> m
Ay 1< P (r") |dr' = VP 14r—=—1V Iy |a®
y Zﬂhzjr—r"w() o Y R
A (1) 2
=21V, la* <<1— 1V, 1<
/4 h ma
2
Case 2. Fast particles ka >>1 \VO\<<hk:hv.

ma m



