
Lectures #15 - 16 

Scattering. Differential cross section. 

Born approximation. Validity of the Born 

approximation. 

Solving scattering problems: examples.

Chapter 10, pages 378-393, Jasprit Singh, Quantum Mechanics

Chapter 13, pages 587-595, 608-620, Bransden & Joachain, 

Quantum Mechanics



Scattering: short-range potential

incident particles
mass: m

velocity: v

range of the

potential V(r)origin

dΩ

dΑ

θ,φ

z

Problem: calculate the probability that the particle is scattered into a 

small solid angle dΩ in the direction θ,φ. 

Detector



Differential cross section

This probability is expressed in terms of differential cross section  

Problem: calculate the probability that the particle is scattered

into a small solid angle dΩ in the direction θ,φ. 
How? By solving Schrödinger equation ... again.
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Schrödinger equation ... again
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Case 1. Free particles: well outside the 

scattering potential range. 

Hamiltonian: H0

Case 2. In the presence of the 

scattering potential. 

Hamiltonian: H=H0+V
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Wave function at large r &

differential cross section 
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(plane wave)

Outgoing 

spherical wave
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Note: potential must decrease faster than 1/r with              . 

f: scattering amplitude                

r→∞

:   in outk k elastic scattering=



1. Write the expression for the wave function           .       

2. Determine the asymptotic behavior of this wave function for             . 

3. Compare it with                                                                .      

4. Determine                from this comparison.

5. Calculate differential cross section using                             .     

How to calculate differential 

cross section?
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Note: this general procedure is used to derive formula for the 

differential cross section both using Born approximation and 

method of partial waves. 



Green’s function
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Green’s function method:
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Since we want to obtain the solution which has an asymptotic form 
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Green’s function
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Note: see pages 609-613 of 

Bransden & Joachain QM book 

for derivation



Asymptotic behavior of ψ(r)
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Differential cross-section
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Born approximation
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Main idea: use perturbation theory to approximate            . 

The scattering wave function is expanded in

powers of the interaction potential.
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Born approximation
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We substitute this expansion into the formula for the scattering amplitude 

First term of this series is (first) Born 

approximation to the scattering amplitude: 
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Born approximation:

just some transformations
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Born approximation:

central potentials V(r)
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In the case of central potential V(r) we can 
integrate over θ’ and φ’. 
We choose axis z’ to be in the direction of q.
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Born approximation: central potential V(r)
How to solve problems: Example 1
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Problem: elastic nucleon scattering from heavy nucleus can be 

represented by a potential 

Calculate the differential cross section in the lowest order in V.
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Born approximation: central potential V(r)
How to solve problems: Example 2
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Problem: a particle of mass m is scattered by a potential 

1. Calculate the differential cross section in the lowest order in V.

2. Calculate the total cross section.

3. Define the criteria for the validity of Born approximation
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Solution:   1.

> assume(a>0);

> Q:=simplify(int(r*exp(-r/a)*sin(q*r),r=0...infinity));
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Born approximation: central potentials V(r)
How to solve problems: Example 2

Solution:   2. The total cross-section is given by the integral
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> q:=2*k*sin(theta/2);

> DQ;

> R:=2*Pi*int(DQ*sin(theta),theta=0...Pi);

> factor(R);
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Validity of the Born approximation

This method is based on treating the scattering potential as a perturbation.

Therefore, for this approach to be valid, the correction to the wave

function which is introduced by a potential (our first order correction              )    

must be small in comparison to the wave function in the 

absence of the potential (in our case            ).
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Using this statement as a guide we use the following criteria for the 

validity of the Born approximation:
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Validity of the Born approximation

We need to evaluate this expression:
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Validity of the Born approximation:
central potential
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Now we consider this condition for the case of the central potential
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Validity of the Born approximation

condition for the central potential
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Validity of the Born approximation
How to solve problems: back to Example 2

Problem: a particle of mass m is scattered by a potential 

3. Define the criteria for the validity of the Born approximation
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Solution:   3.

> assume(k>0);

> assume(a>0);

> (2*m*V/(k*h^2))*abs(int(exp(I*k*r)*exp(-r/a)*sin(k*r),r=0...infinity));
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Validity of the Born approximation
How to solve problems: back to Example 2

2

0

2 2 2

2
1

1 4

m V a

k a
<<

+ℏ

2

0 2

2

0

       1         
2

     1         

k ka V
ma

k
k ka V

ma

<< → <<

>> → <<

ℏ

ℏ

1.Low  limit (slow particles)

2.High  limit  (fast particles)

   Note that the validity of the Born approximation is considerably 
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Validity of the Born approximation

The results derived above may also be obtained for an arbitrary potential if 
we take the |V0| to be the average value of the potential and a to be the 

range over which the potential is significant.

Case 1. Potential is sufficiently weak or sufficiently localized (or the particle 

speed is slow enough).  

(1) (0)
| | << | |ψ ψ∆General condition:

 ' 
1

ik
e

−
≈

r r

2

(1) (0) (0) (0) 2

0 02 2 2

(1) 2

2

0 0(0) 2 2

| ( ') |
| |  | ( ') | d ' | | | | 4 | | | |

2 ' 2 2

                   | | 1             | | <<

m V m a m
V V a

m
V a V

ma

ψ ψ ψ π ψ
π π

ψ

ψ

∆ ≤ ≈ =
−

∆
≈ << →


r

r r
r rℏ ℏ ℏ

ℏ

ℏ

Case 2. Fast particles                                             .      
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