
Lecture #20 

Plane wave solutions of the Dirac equation

Spherical spinors

Hydrogen-like systems … again (Relativistic version)

Dirac energy levels

Chapter 2, pages 48-53, Lectures on Atomic Physics

Chapter 15, pages 696-716, Bransden & Joachain, Quantum 

Mechanics



Plane wave solutions of the 

Dirac equation
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The Dirac equation for the free particle with spin ½ is 

We look for solutions in the form  
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Plane wave solutions of the 

Dirac equation: p=0

First, we consider the case p=0.  We label the solutions u(0). 
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Plane wave solutions of the Dirac 

equation: general case
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We use the following designations:
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Plane wave solutions of the Dirac 

equation: general case
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Therefore, we get four eigenvalues:  
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Plane wave solutions of the 

Dirac equation

We can get the same result by expanding 
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Plane wave solutions of the 

Dirac equation

The corresponding determinant is                                     .

> with(LinearAlgebra):

> A := Matrix([[m*c^2-E,0,c*pz,c*px-I*c*py],

[0,m*c^2-E,c*px+I*c*py,-c*pz],[c*pz,c*px-I*c*py,-m*c^2-E,0],

[c*px+I*c*py,-c*pz,0,-m*c^2-E]]);

> B:=factor(Determinant(A));
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Plane wave solutions of the 

Dirac equation

We note that if                                       holds, then the determinant 

is of rank 2 (all 3x3 minors vanish). Therefore, there are two linearly

independent solutions corresponding to E+.
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Spherical spinors

2
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Total angular momentum is given by J=L+S.

J commutes with the Dirac Hamiltonian hD. Therefore, we may classify 

the eigenstates of hD according to the eigenvalues of energy, J2 and Jz. 

The eigenstates of J2 and Jz are spherical spinors Ωκm(θ,φ).

We combine spherical harmonics, which are eigenstates of L2 and Lz

and spinors, which are eigenstates of S2 and Sz to form eigenstates of 

J2 and Jz (refereed to as spherical spinors Ωjlm(θ,φ)).
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Spherical spinors
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Spherical spinors

Spherical spinors are eigenfunctions of σ σ σ σ ·L and, therefore, of

The eigenvalue for K is  
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Note that the κ (which is referred to as relativistic angular momentum

quantum number) uniquely defines the orbital with l and j 
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Dirac equation for a central 

potential
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h E h c c V rϕ ϕ β= = ⋅ + +α p in atomic units

Total angular momentum is given by J=L+S.

J commutes with the Dirac Hamiltonian hD. Therefore, we may classify 

the eigenstates of hD according to the eigenvalues of energy, J2 and Jz. 

The eigenstates of J2 and Jz are spherical spinors Ωκm(θ,φ).

We seek solutions in a form                                                 . 
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The resulting equations for the radial functions are
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Hydrogen-like systems:

Dirac energy levels
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Dirac energy levels:

The non-relativistic energy levels depends only on the principal quantum

number n. When relativistic effects are taken into accounts the 

non-relativistic energy level will split into n different Dirac energy levels

(fine structure splitting). Note that the energy above depends only on 
the values of n and |κ|=j+1/2, therefore the levels with the same n and l

but different j, for example levels 2p1/2 and 2p3/2 will have different energies.

The energy difference between such levels is called the fine-structure interval.



Hydrogen-like systems:

Dirac energy levels
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Dirac energy levels:

The levels the same n and j but different l will have the same energies, 

for example levels 2s1/2 and 2p1/2. The experimentally observed energy 

difference between these levels is called the Lamb shift and is explained 

by quantum electrodynamics (QED) effects, known as radiative 

corrections. The expansion of the formula above in powers of αZ will give 
(in atomic units)
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