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i Why Relativistic Quantum Mechanics?

The Schrodinger equation: correctly describes the phenomena only if
particle velocities are y << .

It is not invariant under a Lorentz change of the reference frame
(required by the principle of relativity).

Need: a relativistic generalization!



Free particle of spin zero

The Klein-Gordon equation

So, how to come up with such an equation?
For the relativistic particle with rest mass m and momentum p,
E = \/mzc4 +p°c’.

Using the correspondence rule

E%Eopzihai; p—p, =-1hV
!
one can write: ihi‘{’ = (mzc4 —h*c*V* )1/2 ¥,

ot

Problems: 1. It is not clear how to interpret the operator on right-nand
side. If expanded in power series it lead to differential
operator of infinite order.

2. The time and space coordinates do not appear in a
symmetric way (no relativistic invariance ?).



Free particle of spin zero

The Klein-Gordon equation

So we remove the square root and try again (there will be
consequences of removing this square root!)

E2 — m2c4 +p2C2
0

E%Eop:iha—; p—p,, =—IihvV
l

RV, _ (mzc4 _hzczvz)qj <: The Klein-Gordon
ot ' equation

Notes: it is second-order differential equation with respect to the time
unlike the Schrodinger equation.

—h?




Probabilistic interpretation of non-
relativistic quantum mechanics

P(r,t) = “P(r,t)‘2 =¥ (r,)¥(r,t) «— Position probability density

Probability is conserved: aijP(r,t)dr =0
4

2
Using the Schrddinger equation i# o (r,1) = (——VZ +V(r,t)j‘P(r,t)

ot 2m
JoP(r,t)
ot

we obtain +Vj(r,t) =0, where j can be interpreted as

probability current density

je,1) :i[\{'* (ve)-(ve')w|.

2mi



Interpretation of the Klein-Gordon
equation: Problem 1

We try to construct a position probability density P(r,t) and probability current
density j(r,t) which satisfy the continuity equation:

IPD) L i1 =0,
2
multiply by W {—hz aa‘f = (mzc4 —hzczvz)‘{’}
[
multiply by @ | _#2 ke - (mzc4 —hzczvz)\P*
ot

-¥

2 2\s*
d E‘P aatgj aa‘t{;

j =1’ (PVY-PVY)



Interpretation of the Klein-Gordon
equation: Problem 1

If we require that the expressions from j(r,t) and P(r,t) had correct
non-relativistic limits we define

j(r, ) =i[‘1’ (ve)-(ve')w |

2mi

Then, we obtain the equation

with  Pre.r)=—" {‘P a_w_qjai}
G 2mc? ot at/

Y

P(r,t) is not positive-definite and can not be interpreted as position
probability density.

OPD) | i1 =0,
ot




Interpretation of the Klein-Gordon
equation: Problem 2

0’
Free particle Klein-Gordon equation: —7 = (m’c* —=n°c’V?) .
Plane wave solutions: W(r,7) = Ae' ™), T
E=hw

W' =m’c* +h°c*k?

g

We get additional “negative-energy” E =+ Jmict + 62 p?
solutions and energy spectrum is <::I \/ p

not bound from below. Then, arbitrary A
large energy can be extracted from the

p =7k

mc?

system if external perturbation leads to transition 2
between positive and negative energy states. — > 0 | IAE =2mc

_mCZ




Interpretation of the Klein-Gordon
equation

In 1934 W. Pauli and V. Weisskopf reinterpreted Klein-Gordon
equation as a field equation and quantized it using the formalism of
quantum field theory.

Klein-Gordon equation

4L

Relativistic wave equation for spinless particles in the framework of
many-particle theory; negative energy states are interpreted in
terms of antiparticles.

Still, is it possible to define positive-definite position probability density
within the framework of the relativistic theory? —— Dirac equation

Note: we will still get negative-energy states...



P.A. Dirac (1928)

Dirac equation

We start from the wave equation in the form ihi‘P = HWY.

ot T w

/qll\
‘{12

Spatial coordinates (x,;=x, x,=y, x;=2) of a space-time point (event)
and the time coordinate (x,=ict) have to enter on the same footing.

\\PN)

Therefore, the hamiltonian H must be linear in space derivatives as well.

Free particle | Simplest Hamiltonian:

1) Must be independent of r and t
2) Must be linear in p and m

1) are independent of r, t, p, and E

&, 0, 0 and 5 2) do not have to commute with each oth

H=ca-p, +pmc’ p, =—ihV

er



How to determine o and B?

ih%\P =—ihca-V¥+ fmc™¥ or |E, —ca-p,, —fmc’ |[¥=0

The solution of the Dirac equation also must be a solution of the
Klein-Gordon equation

[Ez —c’p’ —mch‘l’zO.
op op

We use it to determine the restrictions on the values of o and 3
by matching the coefficients in

[Eop —ca-p,, —,Bmcz][Eop —ca-p,, —,Bmcz]‘P =0
and

2 2.2 2 4
[E —c’p° —m'c }‘P =0. Note: we drop the index
op op . L
in the derivation below.



How to determine o and B?
Some transformations

+

[E—ca'p—ﬁmcz][E—cwp—,Bmcz}‘P=O

[Ez —Ec(a-p)—Efmc’ —c(a-p)E+c’(a-p)(a-p)+c(a-p)fmc’
—Bmc’E + Bmc’ (u-p)+ﬂ2m2c4]‘P =0

E° —2E(Ca'p+,3mcz)+cz(a~p)(a-p)+mc3 [(a~p)ﬂ+ﬁ(a~p)]+ﬁ2m204]‘{’=O

:Ez —c*(a-p)(a-p)—mc’ [(a°p)ﬁ+ﬁ(a°p)]—ﬂ2mzc4]‘{’ =0

{Ez —cziafpf —czz(alaj +0(j0(i)pl. P, —mc’ Zgl(aiﬂ+,3ai)pi —ﬂ2m2c4]q1 =0
i=1 i< i=1



How to determine o and B?

Now we can match the coefficients of

{Ez —cziafpf —sz(aiaj +05j0(i)pi p; —mc’ 23:(0(“3+,Bai)pi — 2m2c4]‘{’ =0
i=1 i=1 S
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[Ez —c’p’ —mzc4]‘l’ =0.




i Properties of o and [3

2

%=l e, p) =0 fena)=0

270 e, p1=0 {a.a}=0 @ =
2 = _ A
232—1 {a3’18}20 {alaO%}:O A=F

Therefore, a4, 0, 05,and B anticommute in pairs and their
squares are equal to unity.

Clearly, they must be matrices.
The eigenvalues of o and 3 are *1.

pa, =-a,f Tr(e;)=Tr(B)=0
o, =-paf=appf=ap
Tr(e,)=Tr(-pa.p)=Tr(a,f*) =Tr(fo,3) =0



What if the lowest rank of o and [?
Dirac representation of o and 3.

What is the lowest rank of the representation for o and B¢

Tr(a;)=Tr(B)=0 Therefore, rank N must be even.

For 2x2 matrices we can not find a representation of more than 3
anticommuting matrices.

Therefore, the lowest representation has N=4.
Dirac representation:
0 o I O
. = ! — ,
| (O-i 0 j g (0 —1 )

where c;(i=1,2,3) are Pauli matrices

0 1 0 —i 1 O
O = O = O'Z —
10 i 0 0 -1



Dirac equation

/\yl\

For N=4, the wave function Wy — \1{2 IS a four-component spinor

\‘PN J
and describes spin "2 particles.

We note that this result may be foreseen as in non-relativistic quantum
mechanics spin Y2z particles are described by 2-component spinors

and each spin Y2 particle has an antiparticle with the same mass and
spin, which lead to 4-component wave function.

Higher rank matrix representations correspond to particle with spin
greater than 'a.



Covariant form of the Dirac equation

ihai‘l’ =—ihca-V¥ + Smc’¥ x, =(X,ict)
4

3
,BX{ ha—qj+zh Zogi‘lj—ﬂmc‘lij}

ox, = Ox

l

_zﬂza—+ﬁ hc}q!:o

d mc

x, n
- - {r.71=26,, mv=1234

From the Dirac representation _ 0 -0 (10
for the oc and B Vi = c 0 V4= 0 -I)

i




