
Lecture #1        February 7

Syllabus and general course information. 

Review: How does one solve the Schrödinger equation? 

Example: hydrogen-like atom.

Special hydrogenic systems: positronium, muonium, 

antihydrogen, muonic and hadronic atoms. 



Lecture #1        February 8

Chapters 7.2, 7.5 pages 336-341, 351-357, Bransden & Joachain, 

Quantum Mechanics

Lectures on Atomic Physics, Walter Johnson, p. 25 -31(Complete 

lectures are available online; printed version is at the library)



Quantum Mechanics 812

Course will introduce both fundamental 
concepts and techniques of 

quantum mechanics and demonstrate 
their relevance to real-life 

modern applications 



Goals of the course 

• Learn fundamentals of quantum mechanics

• Learn how quantum mechanics is relevant to 

research in various fields and today’s technology 

• Aid in student’s research or in selection of field 

research

• …



Learning

The objective of the course is not to cover 

certain set of topics but to provide a base of 

fundamentals concepts and skills as well as

to demonstrate examples of

their applications which will facilitate further

interest, learning, and thinking.



Textbooks

• Quantum mechanics, B.H. Bransden and C.J. Joachain 

(second edition)

Other textbooks:

• Quantum Mechanics: Fundamentals & Applications to 

Technology, by Jasprit Singh 

• Lecture notes on Atomic Physics, by Walter Johnson; 

available online at http://www.nd.edu/~johnson under

“Unpublished material”.

• Physics of Atoms and Molecules, B.H. Bransden and C.J. 

Joachain (second edition)



Homework

• Homework is assigned ones a week, on Thursday.

• It is due in one week, next Thursday.

• Exceptions will be noted on the assignments

• Late homework policy: it is best to always return it on time

• MAXIMUM number of late homeworks: 1

(no more than a week late)

• No explanation or notification is needed 

• Homework will be graded
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Grading standard

Each problem is graded using “+”, “±”, “∓”, and “−” marks which are 

assigned in accordance with the following standards:

“+” The problem is solved correctly

“±” Substantial portion of the solution, which is in the direction of the 
correct answer is given or complete (in principle correct) solution is 
given but some mistake is made which lead to incorrect answer.

“∓” An attempt to solve problem has been made and an understanding of 

how such problem may be solved is demonstrated (some work in the 
direction of the correct solution is present).

“−” No solution is provided or no understanding of how such problem may 
be solved is demonstrated.
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What does a physical theory 
involves?

Basic physical concepts

Mathematical formalism

Set of rules which map the physical 
concepts to the corresponding 
mathematical objects  



How are the problems solved?

Express physical problem in 
mathematical terms

Translate mathematical
solution back into the 

physical world

Set of rules which relate mathematical 
formalism to observable reality

Solve it using mathematical
techniques



Hydrogenic systems

What do we want to do: definition of the problem.

Find energy levels and wave functions.

Why wave functions?

Knowledge of the wave functions allows one to calculate
atomic properties (various observables).

How to?

Solve the Shrödinger equation. 



How does one solve the Shrödinger equation? 
(Time independent potential)

“Simple” potential

Variational approach:

“Difficult” potential

Solution may be obvious

Transform to some other
mathematical equation with

known solution

Free electron problem

Hydrogen atom problem

Guess the solution with few parameters
Minimize the expectational value of

energy in the system 

Perturbation approach

H=H0+H’, solutions for H0 are known

Numerical approach
Use computers to solve matrix equation
which represent the Shrödinger equation  

Scattering approach



Spherically symmetric potential 
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Spherically symmetric potential 
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Parity & atomic wave function 
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Coulomb wave functions 
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Coulomb wave functions 
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Coulomb wave functions 
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Coulomb wave functions 
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Γ(a)=∞ when a is a negative integer nr

a=-nr

nr=0,1,2, …

 The Confluent Hypergeometric function with a=-nr reduces to a 
polynomial of degree nr. 

 The number nr indicated the number of nodes (zeros) of the radial 
function with r>0.



Coulomb wave functions 

2Eλ = −
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F(x): Confluent Hypergeometric function

a=-nr

nr=0,1,2, …

 The are n distinct radial functions corresponding to En.

 The number of nodes increases in direct proportion to n for a fixed l.

 The outermost maximum of each wave function occur at increasing 
distances from the origin as n increases. 

 The value of |Pnl(r)|
2 gives the probability that the electron is to be 

found at a distance r from the nucleus (regardless of direction.)

 The value of|Pnl(r)/r|2 gives electron density as a function of r along 

the given direction. 
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“Normal” hydrogenic systems

or 

Hydrogen-like ions

 He+ ion (Z=2)

 Li++ ion (Z=3)

 Be3+ ion (Z=4)

 …

Hydrogen 
isoelectronic 

sequence
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Isoelectronic sequences

Sodium-like ions

 Mg+ ion (Z=12)

 Al++ ion (Z=13)

 Si3+ ion (Z=14)

 …

Sodium 
isoelectronic 

sequence

Na
Z=11



Hydrogenic systems: deuterium 
and tritium.

 Deuterium: nucleus contains one proton and one neutron 

 Tritium: nucleus contains one proton and two neutrons

 Slightly different reduced mass 

 Nearly the same ionization potentials (10-3)

 Slight differences: isotope shifts
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Special hydrogenic systems: 
positronium & muonium.

 Replace nucleus with another particle

 Positronium: bound hydrogenic system made from 
electron and positron (e+e-). 

Reduced mass: ½, ionisation potential: ¼.

 Muonium: proton is replaced by a positive muon µ+

[M≈207], (µ+e-). Unstable with lifetime τ ≈2×10-6 s  
Reduced mass:  ≈1, ionization potential ½.

 Interest: contain only leptons, so they are not affected by 
strong interactions.

 Particularly suitable to verify the prediction of QED.



Special hydrogenic systems: 
antihydrogen.

 Replace proton with antiproton and electron with positron

 First observed in 1996 at CERN (9 atoms, 40ns).

 Reduced mass: 1, ionisation potential: ½.

 Interest: to test CPT symmerty

( )+pe



Special hydrogenic systems: 
muonic atoms.

 Muonic atoms: replace electron with muon 

 Reduced mass ≈186, ionization potential ≈ 93 

 and “radius” is 186 times smaller than that of the 
hydrogen atom.

 Spectral lines in X-ray region (multiply hydrogen 
frequencies by 186).

 (Nµ): Lead, Z=82 can no longer use the previous 

formulas as we can not consider both particles 

point-like.

 Interest: to probe the nucleus (energy spectrum is 
sensitive to internal structure of the nucleus.)



Special hydrogenic systems: 
hadronic atoms.

 Hadronic atoms: replace electron with hadron (particles

which can have strong interactions) 

 Strong interactions: can not directly apply theory of 
hydrogenic systems

 Excited states (especially with l>0) can be studied within 
this approach as strong interactions have a short range.


