### Lectures 5-6

#### **Introduction to computer science**

### MODELS FOR COMPUTATION: TURING MACHINES



**Finite state control:** consists of finite set of internal states q<sub>1</sub>, ..., q<sub>m</sub> and special states q<sub>s</sub> and q<sub>h</sub> which are the starting state and halting state, respectively.

**Tape:** one-dimensional object which stretches to infinity in one direction and consists of the tape squares. The tape squares each contain one symbol drawn from some alphabet .

**Read/Write Head:** identifies a square on the tape which is being accessed by a machine.

**Program:** finite ordered list of program lines in the form <q, x, q', x', s>.

#### Turing machine: How does it work?

1) The Turing machine looks through the lines of the program searching for a line  $\langle q, x, ... \rangle$ , where q is the current state of the machine and x is the symbol being read on a tape.

2) If it can find such a line it changes the state of the machine to q', overwrites the symbol on the tape square to x' and moves the read/write head by **s** tape squares.

3) If it can not find such a line the internal state of the machine is changed to  $q_h$ , machine halts operation and whatever is one the tape is an output.

#### **Turing machine: Example**

- Internal states: q<sub>1</sub>, q<sub>2</sub>, q<sub>3</sub>, q<sub>h</sub>, q<sub>s</sub>.
- Alphabet: ▷ (marks left hand edge), 0, 1 and blank spaces (designated in program as b).
- Tape initially contains binary number x followed by all blanks.

Example:  $[ b | 1 | 0 | 1 | b | b | \dots Call blanks )$ • Program:  $\langle q_s, \triangleright, q_1, \triangleright, +1 \rangle$   $\langle q_1, 0, q_1, b, +1 \rangle$   $\langle q_1, 1, q_1, b, +1 \rangle$   $\langle q_1, b, q_2, b, -1 \rangle$   $\langle q_2, b, q_2, b, -1 \rangle$  $\langle q_2, \triangleright, q_3, \triangleright, +1 \rangle$ 

$$\langle q_3, b, q_h, 1, 0 \rangle$$

Class exercise: What does this this program do (use example above)?

$$f(x) = ?$$







Same program line as in step 6: keep moving back until the end of the tape is reached.



Since the present state of the machine is a halt state, the calculation ends.

Result: f(x) = 1.

Your can see from the program that this it true for any x since the program will just keep erasing all 0 and 1, then comes back to the beginning of the tape and writes "1".

## **Church-Turing thesis:**

The class of functions computable by a Turing machine corresponds exactly to the class of functions which we would naturally regard as being computable by an algorithm.

The thesis asserts equivalence between a rigorous mathematical concept, i.e. function computable by the Turing machine and the intuitive concept what it means for a function to be computable by an algorithm. No evidence to the contrary has been found.

- Quantum computers also obey Turing thesis, the difference is in efficiency.
- There are different versions of the Turing machine: multi-tape machines, introduction of the randomness in the model.
- There exists a Universal Turing machine which can simulate any other Turing machine.

### Models for computation: Circuit model

**Circuits** are made of **wires** which carry information and **gates** which perform simple computational tasks.

Assume that **no loops are allowed**: acyclic model of computation.

**Logic gate:** a function  $f: \{0, 1\}^k \rightarrow \{0, 1\}^l$  from k input bits to l output bits.

**Example:** classical not gate, which is the only non-trivial single bit classical gate.

| Α | ΝΟΤΑ |
|---|------|
| 0 | 1    |
| 1 | 0    |

# More classical logic gates:

$$\begin{array}{c} A \\ B \end{array} \end{array} \longrightarrow A \operatorname{xor} B$$

| A | B | $A \operatorname{XOR} B$ |
|---|---|--------------------------|
| 0 | 0 | 0                        |
| 0 | 1 | 1                        |
| 1 | 0 | 1                        |
| 1 | 1 | 0                        |



| A | B | A  and  B |
|---|---|-----------|
| 0 | 0 | 0         |
| 0 | 1 | 0         |
| 1 | 0 | 0         |
| 1 | 1 | 1         |



| A | B | A OR B |
|---|---|--------|
| 0 | 0 | 0      |
| 0 | 1 | 1      |
| 1 | 0 | 1      |
| 1 | 1 | 1      |



| A | B | A NAND $B$ |
|---|---|------------|
| 0 | 0 | 1          |
| 0 | 1 | 1          |
| 1 | 0 | 1          |
| 1 | 1 | 0          |

# Class exercise: What does this gate do?



| x | y | $x \oplus y$ | С |
|---|---|--------------|---|
| 0 | 0 |              |   |
| 0 | 1 | $\sim$       |   |
| 1 | 0 | (            |   |
| 1 | 1 |              |   |

| x | y | $x \oplus y$ | С |
|---|---|--------------|---|
| 0 | 0 | 0            | 0 |
| 0 | 1 | 1            | 0 |
| 1 | 0 | 1            | 0 |
| 1 | 1 | 0            | 1 |

## **Elements of universal circuit construction**

- Wires: preserve the states of the bits
- Ancilla bits prepared in standard state
- The FANOUT operation, which takes a bit and make a copy of it.
- The crossover operation, which interchanges the value of two bits
- The AND, XOR, and NOT gates

## The analysis of computational problems

- What is a computational problem?
- How may we design algorithms to solve a computational problem?
- What are the minimal resources required to solve a given computational problem?
- Resources: time, space, and energy.
- Can we classify the problems according to the resource requirements needed to solve them?

# **Computational complexity**

- Computational complexity is the study of the time and space resources required to solve computational problems.
- Task: prove lower bounds on the resources required by the best possible algorithm for solving a problem.
- Suppose that the problem is specified by giving n bits as an input. Chief distinction: problems which can be solved using the resources which grow polynomial in n and problems which grow faster than any polynomial in n.
- The problem is regarded as **easy, tractable or feasible** if an algorithm for solving the problem using polynomial resources exists, and as **hard, intractable or infeasible** if the best possible algorithm requires exponential resources.

Bits a and b are swapped if control bit c is 1.



| a | b | c | a' | b' | c' |
|---|---|---|----|----|----|
| 0 | 0 | 0 | 0  | 0  | 0  |
| 0 | 1 | 0 | 0  | 1  | 0  |
| 1 | 0 | 0 | 1  | 0  | 0  |
| 1 | 1 | 0 | 1  | 1  | 0  |
| 0 | 0 | 1 | 0  | 0  | 1  |
| 0 | 1 | 1 | 1  | 0  | 1  |
| 1 | 0 | 1 | 0  | 1  | 1  |
| 1 | 1 | 1 | 1  | 1  | 1  |



| a | b | С | a' | b'              | c' |
|---|---|---|----|-----------------|----|
|   | y | x | xy | $\overline{x}y$ | x  |
| 0 | 0 | 0 | 0  | 0               | 0  |
| 0 | 1 | 0 | 0  | 1               | 0  |
| 0 | 0 | 1 | 0  | 0               | 1  |
| 0 | 1 | 1 | 1  | 0               | 1  |



| a | b | c | a'             | b' | c' |
|---|---|---|----------------|----|----|
|   |   | x | $\overline{x}$ | x  | x  |
| 1 | 0 | 0 | 1              | 0  | 0  |
| 1 | 0 | 1 | 0              | 1  | 1  |



| a | b | c | a' | b' | c' |
|---|---|---|----|----|----|
| x | y |   | y  | x  |    |
| 0 | 0 | 1 | 0  | 0  | 1  |
| 0 | 1 | 1 | 1  | 0  | 1  |
| 1 | 0 | 1 | 0  | 1  | 1  |
| 1 | 1 | 1 | 1  | 1  | 1  |