
Lectures 5-6

Introduction to computer science

MODELS FOR COMPUTATION: TURING MACHINESMODELS FOR COMPUTATION: TURING MACHINESMODELS FOR COMPUTATION: TURING MACHINESMODELS FOR COMPUTATION: TURING MACHINES

Finite state control: consists of finite set of internal states q1, …, qm and special
states qs and qh which are the starting state and halting state, respectively.

Tape: one-dimensional object which stretches to infinity in one direction and consists
of the tape squares. The tape squares each contain one symbol drawn from some
alphabet .

Read/Write Head: identifies a square on the tape which is being accessed by a
machine.

Program: finite ordered list of program lines in the form <q, x, q', x', s>.

Turing machine: How does it work?

1) The Turing machine looks through the lines of the program searching for a line
<q, x ,…>, where q is the current state of the machine and x is the symbol
being read on a tape.

2) If it can find such a line it changes the state of the machine to q', overwrites the
symbol on the tape square to x' and moves the read/write head by s tape squares.

3) If it can not find such a line the internal state of the machine is changed to qh,
machine halts operation and whatever is one the tape is an output.

Turing machine: Example

Internal states: q1, q2, q3, qh, qs.•

Alphabet: (marks left hand edge), 0, 1 and blank spaces (designated in program as b).•

Tape initially contains binary number x followed by all blanks.•

Example:

Program:•

Class exercise: What does this this program do (use example above)?

Look for program line starting with

Program line:

4. Now use the same program line as in step 2

Look for program line:

5. Before:

Program line:

After:

Look for program line starting from

6. Program line

After:

7 and 8

Same program line as in step 6: keep moving back until the end of the tape is
reached.

After:

Look for line starting with

9. Program line:

After:

Look for line starting with

10 Program line:

After:

Since the present state of the machine is a halt state, the calculation ends.

Result:

Your can see from the program that this it true for any x since the program will just
keep erasing all 0 and 1, then comes back to the beginning of the tape and writes
"1".

Church-Turing thesis:

The class of functions computable by a Turing machine corresponds exactly to the class of
functions which we would naturally regard as being computable by an algorithm.

The thesis asserts equivalence between a rigorous mathematical concept, i.e.
function computable by the Turing machine and the intuitive concept what it
means for a function to be computable by an algorithm. No evidence to the
contrary has been found.

Quantum computers also obey Turing thesis, the difference is in efficiency.•

There are different versions of the Turing machine: multi-tape machines,
introduction of the randomness in the model.

•

There exists a Universal Turing machine which can simulate any other Turing
machine.

•

Models for computation: Circuit model

Circuits are made of wires which carry information and gates which perform
simple computational tasks.

Assume that no loops are allowed: acyclic model of computation.

Logic gate: a function f: {0, 1}k
→ {0, 1}l from k input bits to l output bits.

Example: classical not gate, which is the only non-trivial single bit classical gate.

More classical logic gates:

Class exercise: What does this gate do?

Elements of universal circuit construction

Wires: preserve the states of the bits•

Ancilla bits prepared in standard state•

The FANOUT operation, which takes a bit and make a copy of it.•

The crossover operation, which interchanges the value of two bits•

The AND, XOR, and NOT gates•

The analysis of computational problems

What is a computational problem?•

How may we design algorithms to solve a computational problem?•

What are the minimal resources required to solve a given computational problem?•

Resources: time, space, and energy.•

Can we classify the problems according to the resource requirements needed to solve
them?

•

Computational complexity

Computational complexity is the study of the time and space resources required to
solve computational problems.

•

Task: prove lower bounds on the resources required by the best possible algorithm
for solving a problem.

•

Suppose that the problem is specified by giving n bits as an input. Chief distinction:
problems which can be solved using the resources which grow polynomial in n and
problems which grow faster than any polynomial in n.

•

The problem is regarded as easy, tractable or feasible if an algorithm for solving
the problem using polynomial resources exists, and as hard, intractable or
infeasible if the best possible algorithm requires exponential resources.

•

Reversible computation: Fredkin gate

