
Particle of mass m, constrained
to move along x-axis, subject to some
force F(x,t).

Task of classical mechanics: find x(t). If we find x(t), we can find velocity

momentum p=mv, kinetic energy                    , an so on. 

How do we determine x(t)? Use second Newton's law                  .

For conservative forces     

+ initial conditions (generally position and velocity at t = 0).

Quantum mechanics (in one dimension)

Task: we want to determine particle's wave function Ψ.

To do so we use Schrödinger equation:

Lectures 3-4
A very brief introduction to quantum mechanics

Classical mechanics (in one dimension):



is a Plank's constant divided by 2π

Note: wave function is complex, but Ψ*Ψ is real and nonnegative. Ψ* is a complex
conjugate of Ψ. So,we can find the wave function.

What is the wave function?

Born's statistical interpretation of the wave function:

gives the probability of finding  the particle

at the point  x at time t.  More precisely,

probability of finding

a and b, at time t

Problem: indeterminacy of the quantum mechanics.  Even if you know
everything that theory (i.e. quantum mechanics ) has to tell you about  the
particle (i.e. wave function), you can not  predict with certainty where this
particle is  going to be found by the experiment.

Quantum mechanics provides statistical information about possible results.

Example: particle is likely to be
found in the vicinity of A and is
unlikely to be found  in the vicinity
of B.

Now, suppose we make a measurement and find particle at C.



Question: where was the particle just before the  measurement ?

Answer # 1. Realist position.

It was at C. That means quantum mechanics is  incomplete theory. Why?
Well, the particle was at C, but quantum mechanics could not predict  it.
Therefore, does not give the whole story and we need additional information
(hidden variables)  to provide a complete description of the particle.

Answer #2. The orthodox position.

The particle was not really anywhere.  It was an act of measurement that
forced particle to "take a stand". We still  have no idea why it "decided" on point C.
Note: there is something very strange about  concept of measurement.

Answer #3. The agnostic position.

Refuse to answer. Since the only way to know if you were right is to make a
measurement,  you no longer get "before the measurement".  Therefore,
it can not be tested.

In 1964, Bell shown that it makes an observable  difference if the particle
has a precise  (but unknown) position before measurement, which rules out
answer #3.

What if we make a second measurement  after the first?

Repeated measurement returns the same value.

The first measurement alters the wave function and it collapses to a spike at C.
After that, it will start evolving according to Schrödinger equation.

Note: somewhere".
"particle must be



Bosons and fermions

If the particle one is in state             and particle  two is in state     , then the total state
can  be written as the simple product (we will ignore spin for now):

Note of caution: by no means assume that all two-particle  states can be separated into simple
product states. All entangled states can not be separated into product states.  Here is example of
the  entangled state.

Suppose each of two particles can be in spin state  up  or down  , then the following state
can not  be separated into product states:

This state means that if the spin of one particle is up, then the spin of the other particle
must  be down. Such state can not be separated into the product state as neither particle is in
definite state of being spin up or spin down.

Equation (1) above assumes that we can tell which particle is particle one and which particle is
particle two. In classical mechanics, you can always identify which particle is which. In quantum
mechanics, you simply can't say which electron is which as you can not put any labels on them

to tell them apart.

There are two possible ways to deal with indistinguishable particles, i.e. to construct
two-particle  wave function that is non committal to which particle is in which state:

Therefore, quantum mechanics allows for two kinds of identical particles: bosons (for the  "+"
sign) and fermions (for the "-" sign). In our non-relativistic quantum mechanics  we accept
the following statement as an axiom:

All particles with integer spin are bosons,
all particles with half integer spin are fermions.



From the above, two identical fermions can not occupy the same state:

It is called Pauli exclusion principle.

We introduce operator P that interchanges  two particles ( exchange operator)

If particles are identical

Then, we can find solutions to Schrödinger equation that are either symmetric or 
antisymmetric:

Wave function is required to satisfy (2) for  identical particles.



Formalism of quantum mechanics

In quantum mechanics, the state of the system is  described by its wave function and  
the observables are represented by operators. Wave functions satisfy requirements for 
vectors and operators act on the wave functions as linear transformations. Therefore, it is
natural to use language of linear algebra.

Only normalizable wave functions represent physical states. The set of all square-
integrable functions, on  a specified interval,

constitutes a Hilbert space. Wave functions live in Hilbert space.

The inner product of two functions f and g is  defined as

Dirac notations

In a finite-dimensional vector space, where  the vectors expressed as columns,

the corresponding bra is a row vector



A function is said to be normalized if  its inner product with itself is one.

Two wave functions are orthogonal if their inner product is zero.

A set of functions is orthonormal if they  are normalized and mutually orthogonal.

Observables in quantum mechanics are  represented by hermitian operators, i.e. such 
as

The expectation value of an observable  Q (x, p) can be written as

Determinate states : such states that every measurement of Q is certain to return the
same value q. Determinate states are eigenfunctions of Q and q is the
corresponding eigenvalue.



Generalized statistical interpretation:

If  your measure observable Q on a particle in a state          you will get one  of
the eigenvalues of the hermitian operator Q. If the spectrum of Q is discrete, the 
probability of getting the eigenvalue      associated with orthonormalized
eigenfunction           is

It the spectrum is continuous, with real eigenvalues q(z) and associated
Dirac-orthonormalized  eigenfunctions  , the probability of getting  a result
in the range dz is

The wave function "collapses" to the corresponding eigenstate upon measurement.



Summary: Postulates of quantum mechanics (1-3)

Postulate 1

The state of a system at any instant of time may be represented by a wave function 
     which is continuous and differentiable.  Specifically, if a system is in the

state  , the average of any physical observable        relevant he this system
in time  is

Postulate 2

To any self-consistently and well-defined observable Q , such as linear momentum,
energy, angular momentum, or a number of particles, there correspond an operator
    such that measurement of Q yields values (call these measured values q) which
are eigenvalues of Q. That is,  the values q are those for which the  equation

has a solution  . The function is called  the eigenfunction of  corresponding
to the eigenvalue q.

Postulate 3 

Measurement of the observable Q that yields the value q leaves the system
in the state            , where is the eigenfunction of Q that corresponds  to
the eigenvalue q.




