Lecture 7

The standard quantum mechanical notation for a vector in a vector space is $|\psi\rangle . \psi$ is a label for the vector.
|.) may be used to indicate that object is a vector (also called ket).
Vector space also contains zero vector.
We will denote it 0 instead of $|0\rangle$ since $|0\rangle$ is usually used to designate $\left|\Psi_{0}\right\rangle \equiv|0\rangle$.
Qubit: $\quad \psi=\alpha|0\rangle+\beta|1\rangle=\alpha\binom{1}{0}+\beta\binom{0}{1}=\binom{\alpha}{\beta}$
A spanning set for a vector space: a set of vectors $\left|v_{1}\right\rangle, \ldots,\left|v_{n}\right\rangle$
such that any vector $|v\rangle$ in the vector space can be written as a linear combination $|v\rangle=\sum_{i} a_{i}\left|v_{i}\right\rangle$ of vectors in that set.
Example: a spanning set for the vector space C^{2} is $\left|v_{1}\right\rangle=\binom{1}{0}, \quad\left|v_{2}\right\rangle=\binom{0}{1}$ since any vector $|v\rangle=\binom{\alpha}{\beta}$ can be written as linear combination $|v\rangle=\alpha\left|v_{1}\right\rangle+\beta\left|v_{2}\right\rangle$.

Note: a vector space may have many different spanning sets.
Example: $\left|v_{1}\right\rangle=\frac{1}{\sqrt{2}}\binom{1}{1}, \quad\left|v_{2}\right\rangle=\frac{1}{\sqrt{2}}\binom{1}{-1}$
Any linear combination $\sum_{i} \alpha_{i}\left|\psi_{i}\right\rangle$ is a superposition of the states $\left|\psi_{i}\right\rangle$ with amplitude α_{i} for the state $\left|\psi_{i}\right\rangle$. Example: state $\frac{|0\rangle-|1\rangle}{\sqrt{2}}$ is a superposition of $\mid 0>$ and $\mid 1>$.

Classical single bit gate: NOT gate

This is the only non-trivial single bit classical gate.

Quantum single qubit gates

Quantum NOT gate

$$
\alpha|0\rangle+\beta|1\rangle \longrightarrow \alpha|1\rangle+\beta|0\rangle
$$

Matrix representation for Quantum NOT (X gate)

$$
x \equiv\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad x\binom{\alpha}{\beta}=\binom{\beta}{\alpha} \quad-x \quad x \quad x \text { gate }
$$

Z gate: leaves |0> unchanged and flips the sign of |1>

$$
\begin{aligned}
& \alpha|0\rangle+\beta|1\rangle \quad \alpha|0\rangle-\beta|1\rangle z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
& Z \psi=Z\binom{\alpha}{\beta}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{\alpha}{\beta}=\binom{\alpha}{-\beta}=\alpha|0\rangle-\beta|1\rangle
\end{aligned}
$$

Hadamard gate

$$
H=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right)
$$

$$
\alpha|0\rangle+\beta|1\rangle-H=\alpha \frac{|0\rangle+|1\rangle}{\sqrt{2}}+\beta \frac{|0\rangle-|1\rangle}{\sqrt{2}}
$$

Exercise: use matrix form of H to demonstrate how Hadamard gate operate on a quit

$$
H\binom{\alpha}{\beta}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\binom{\alpha}{\beta}=\frac{1}{\sqrt{2}}\binom{\alpha+\beta}{\alpha-\beta}=\alpha \frac{|0\rangle+|1\rangle}{\sqrt{2}}+\beta \frac{|0\rangle-|1\rangle}{\sqrt{2}}
$$

More single qubit gates
Note: matrix U describing singe quit gate must be unitary. $U^{+} U=1$.
Phase gate: $\quad S=\left(\begin{array}{ll}1 & 0 \\ 0 & i\end{array}\right)$
Question to the class: what operation does this gate perform?

$$
\alpha|0\rangle+\beta|1\rangle \quad 5
$$

$$
\begin{aligned}
& S\binom{1}{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right)\binom{1}{0}=\binom{1}{0} \quad \text { (leaves }|0\rangle \text { unchanged) } \\
& S\binom{0}{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right)\binom{0}{1}=\binom{0}{i} \quad|1\rangle \rightarrow i|1\rangle \\
& \alpha|0\rangle+\beta|1\rangle \quad S \quad S|0\rangle+i \beta|1\rangle
\end{aligned}
$$

$\frac{\pi}{8}$ gate: $\quad T=\left(\begin{array}{cc}1 & 0 \\ 0 & \exp (i \pi / 4)\end{array}\right)$
Question to the class:
Does this gate preserve normalization of a qubit? $\langle\psi \mid \psi\rangle=1$

$$
\left(\begin{array}{ll}
\alpha^{*} & \beta
\end{array}\right)\binom{\alpha}{\beta}=|\alpha|^{2}+|\beta|^{2}=1
$$

Note: all gates do since $U^{+} U=1$.

Why the T gate is called $\pi / 8$ while $\pi / 4$ appears in the definition?
The reason is historical. This gate is equivalent (up to unimportant global factor) to the following gate:

$$
T=\exp \left(\frac{i \pi}{8}\right)\left(\begin{array}{cc}
\exp \left(-\frac{i \pi}{8}\right) & 0 \\
0 & \exp \left(\frac{i \pi}{8}\right.
\end{array}\right)
$$

Geometrical representation of a gubit

We can re-write $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$ as

$$
|\psi\rangle=e^{i \gamma}\left(\cos \frac{\theta}{2}|0\rangle+e^{i \varphi} \sin \frac{\theta}{2}|1\rangle\right)
$$

where γ, θ, and φ are real numbers.

$$
|\alpha|^{2}+|\beta|^{2}=e^{-i \gamma} e^{i \gamma} \cos ^{2} \frac{\theta}{2}+e^{i \gamma} e^{-i \gamma} e^{i y} e^{-i \varphi} \sin ^{2} \frac{\theta}{2}=1
$$

$$
\psi\rangle=e_{\uparrow}^{i \gamma}\left(\cos \frac{\theta}{2}|0\rangle+e^{i \varphi} \sin \frac{\theta}{2}|1\rangle\right)
$$

global factor can be omitted since it has no observable effects
The numbers θ and φ define a point on the unit three-dimensional sphere:

This sphere is called the Bloch sphere; it provides means of visualizing the state of a single qubit. The single qubit gates may be represented as rotations of a qubit on the Bloch sphere. Unfortunately, there is no simple generalization of the Bloch sphere for multiple qubits.

Class exercise: show $|\psi\rangle=|0\rangle$ and $|\psi\rangle=|1\rangle$ on the Bloch sphere.

1) | $\|\psi\rangle=10\rangle$ |
| :--- |
| $\alpha=1 \quad \cos \frac{\theta}{2}=1 \quad \theta=0$ |

| $1 \psi\rangle=117$ |
| :--- | :--- |
| $\cos \frac{\theta}{2}=0$ |

$\sin \frac{\pi}{2}=1$

Rotation operators

The Pauli matrices X, Y, and Z give rise to the rotation operators about the x, y, and z axis of the Bloch sphere:

$$
\begin{aligned}
R_{x}(\theta) & \equiv e^{-i \theta X / 2}=\left[\begin{array}{cc}
\cos (\theta / 2) & -i \sin (\theta / 2) \\
-i \sin (\theta / 2) & \cos (\theta / 2)
\end{array}\right] \\
R_{y}(\theta) & \equiv e^{-i \theta Y / 2}=\left[\begin{array}{cc}
\cos (\theta / 2) & -\sin (\theta / 2) \\
\sin (\theta / 2) & \cos (\theta / 2)
\end{array}\right] \\
R_{z}(\theta) & \equiv e^{-i \theta Z / 2}=\left[\begin{array}{cc}
e^{-i \theta / 2} & 0 \\
0 & e^{i \theta / 2}
\end{array}\right]
\end{aligned}
$$

Multiple qubits

The tensor product: way of putting vector spaces together to form larger vector spaces. (Example: to construct multiparticle systems).

V \& W: vector spaces of dimension m and n, respectively, let us also assume that V and W are Hilbert spaces. Then, $\mathrm{V} \otimes \mathrm{W}$ is an mn dimensional vector space. The elements of $\mathrm{V} \otimes \mathrm{W}$ are linear combinations of $|v\rangle \otimes|w\rangle$.

Notations we use in this course:
$|v\rangle \otimes|w\rangle \equiv|v\rangle|w\rangle \equiv|v, w\rangle \equiv|v w\rangle$
Remember: $\left.|\Psi\rangle=\frac{|00\rangle+|11\rangle}{\sqrt{2}}\right)$.
Example: if V is a two-dimensional vector space with basis vectors
$|0\rangle$ and $|1\rangle$, then $|0\rangle \otimes|0\rangle+|1\rangle \otimes|1\rangle \equiv|00\rangle+|11\rangle$
is an element of $\mathrm{V} \otimes \mathrm{V}$.
Useful notation: $|\psi\rangle^{\otimes k}=\underbrace{|\psi\rangle \otimes|\psi\rangle \ldots \otimes|\psi\rangle}_{k}$.
For example, $|\psi\rangle^{\otimes 2}=|\psi\rangle \otimes|\psi\rangle$.

TWO-QUBIT GATES

Controlled operations: "If A is true, then do B"

Controlled-NOT (CNOT) gate

$\|A B\rangle$	$\left\|A B^{\prime}\right\rangle$
$\|00\rangle$	$\|00\rangle$
$\|01\rangle$	$\|01\rangle$
$\|10\rangle$	$\|11\rangle$
$\|11\rangle$	$110\rangle$

Gate operations: if control quit is $|1\rangle$, then flip the target quit.
Question for the class: what is the matrix representation for this gate?
$U|00\rangle=100\rangle$
$\left(\begin{array}{llll}\alpha_{11} & \alpha_{12} & \alpha_{13} & \alpha_{14} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} & \alpha_{24} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} & \alpha_{34} \\ \alpha_{41} & \alpha_{42} & \alpha_{43} & \alpha_{44}\end{array}\right)\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)$

$$
\left(\begin{array}{l}
\alpha_{11} \\
\alpha_{21} \\
\alpha_{31} \\
\alpha_{41}
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) \quad \begin{aligned}
& \alpha_{11}=1 \\
& \alpha_{21}=\alpha_{31}=\alpha_{41}=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { In the same way } \left.\alpha_{22}=1, \alpha_{12}=\alpha_{32}=\alpha_{42}=0 \text { from } U|017=| 01\right\rangle \\
& U|10\rangle=|11\rangle \Rightarrow \\
& \left(\begin{array}{llll}
1 & 0 & \alpha_{13} & \alpha_{14} \\
0 & 1 & \alpha_{23} & \alpha_{24} \\
0 & 0 & \alpha_{33} & \alpha_{34} \\
0 & 0 & \alpha_{43} & \alpha_{44}
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)\left(\begin{array}{l}
\alpha_{13} \\
\alpha_{23} \\
\alpha_{33} \\
\alpha_{43}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) \Rightarrow \\
& \alpha_{33}=\alpha_{13}=\alpha_{23}=0, \alpha_{43}=1 \\
& U|11\rangle=|10\rangle \Rightarrow\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
\end{aligned}
$$

More on controlled operations

Suppose U is an arbitrary single quit unitary operation. A controlled-U operation is a two-qubit operation with a control quit and a target quit. If control quit is set, then U is applied to the target quit.

Example: controlled-NOT gate is controlled-X gate.

Note that now we can write its matrix right away: $\quad U=\left(\begin{array}{cc}I & 0 \\ 0 & x\end{array}\right)$
Example: what does this circuit do?

$1017 \rightarrow 111\rangle \rightarrow 07 \rightarrow 1007$
$|10\rangle \rightarrow|00\rangle \rightarrow 100\rangle \rightarrow 110\rangle$
$111\rangle \rightarrow|01\rangle \rightarrow|01\rangle \rightarrow 111\rangle$

Question for the class: what does this circuit do?

Classical computation on a quantum computer

Toffoli gate

Questions for the class:

1) How would you use Toffoli gate to implement NAND gate?
2) How would you use Toffoli gate to make a "copy"?
3)

2)

\(\left.\begin{array}{|l|l|l||c|c|c|}\hline a \& b \& c \& a^{\prime} \& b^{\prime} \& c^{\prime}

\hline 0 \& 0 \& 1 \& 0 \& 0 \& 1

0 \& 1 \& 1 \& 0 \& 1 \& 1

1 \& 0 \& 1 \& 1 \& 0 \& 1

1 \& 1 \& 1 \& 1 \& 1 \& 0

\hline \hline 0 \& 1 \& 0 \& 0 \& 1 \& 0

0 \& 0 \& 0 \& 0 \& 0 \& 0

\hline \hline 1 \& 0 \& 0 \& 1 \& 0 \& 0

1 \& 1 \& 0 \& 1 \& 1 \& 1

\hline\end{array}\right\}\)| |
| :--- |
| use this |
| part |

a	b	c	a^{\prime}	b^{\prime}	c^{\prime}
0	0	1	0	0	1
0	1	1	0	1	1
1	0	1	1	0	1
1	1	1	1	1	0
0	1	0	0	1	0
0	0	0	0	0	0
1	0	0	1	0	0
1	1	0	1	1	1
\boldsymbol{a}					

Universal quantum gates

A set of gates is said to be universal for quantum computation if any unitary operation may be approximated to arbitrary accuracy by a quantum circuit involving only those gates.

A unitary matrix U which acts on d-dimensional Hilbert space may be decomposed into a product of two-level matrices; i.e. unitary matrices which act non-trivially only on two-or-fewer vector components.

$$
\begin{aligned}
& U=V_{1} \ldots V_{k} \\
& k \leq d(d-1) / 2
\end{aligned}
$$

