Lecture 15

Quantum parallelism

$f(x):\{0,1\} \rightarrow\{0,1\}$ is a function with one-bit domain and range.
Example: \#1 $f(x)=0,0 \rightarrow 0,1 \rightarrow 0$
Question for the class: list all possible $f(x)$ functions.
$(\# 2) f(x)=1,0 \rightarrow 1,1 \rightarrow 1$
(\#3) bit flip $0 \rightarrow 1,1 \rightarrow 0$
$(\# 4) f(x)=x, 0 \rightarrow 0,1 \rightarrow 1$

Circuit for evaluating both $f(0)$ and $f(1)$ in one step

Note that $\mathrm{x} \oplus \mathrm{y}$ is addition modulo 2, i.e. $0 \oplus 0=0,0 \oplus 1=1,1 \oplus 0=1,1 \oplus 1=0$
(a) data register
(b) target register

black box for our purposes

Since $O \oplus f(x)=f(x)$ the output is
$|\psi\rangle=|x, 0 \oplus f(x)\rangle=|x, f(x)\rangle=\frac{|0, f(0)\rangle+|1, f(1)\rangle}{\sqrt{2}}$
"Quantum parallelism": information about both $f(0)$ and $f(1)$ is obtained in a single evaluation of the function $f(x)$.

Deutch's algorithm: evaluating $\mathrm{f}(0) \oplus \mathrm{f}(1)$ (pages 30-34 of the textbook)

This circuit evaluates $f(0) \oplus f(1)$ that is global property of $f(x)$ with only one evaluation of $f(x)$ function.

$$
\left|\psi_{0}\right\rangle=|01\rangle
$$

Class exercise: write $\left|\psi_{1}\right\rangle$.

$$
\begin{aligned}
& H: \quad|0\rangle \rightarrow \frac{|0\rangle+|1\rangle}{\sqrt{2}} \quad|1\rangle \rightarrow \frac{|0\rangle-|1\rangle}{\sqrt{2}} \\
& \left|\psi_{1}\right\rangle=\left[\frac{|0\rangle+11\rangle}{\sqrt{2}}\right]\left[\frac{10\rangle-11\rangle}{\sqrt{2}}\right]
\end{aligned}
$$

To write out $\left.1 \psi_{2}\right\rangle$ we need to know how U_{f} box will act on our wave function $\left|\psi_{1}\right\rangle$. Below, we prove that

$$
U_{f}\left[|x\rangle \frac{(10\rangle-117)}{\sqrt{2}}\right] \rightarrow(-1)^{f(x)}|x\rangle \frac{10\rangle-11\rangle}{\sqrt{2}}
$$

Proof:

$$
\begin{aligned}
& U_{f}: \quad|x, y\rangle \rightarrow|x, y \oplus f(x)\rangle \\
& y \equiv \frac{|07-| 1\rangle}{\sqrt{2}}
\end{aligned}
$$

$V_{f}: \quad|x, 0\rangle \rightarrow|x, 0 \oplus f(x)\rangle=|x, f(x)\rangle$

$$
U_{f}|x, 1\rangle \rightarrow|x, 1 \oplus f(x)\rangle
$$

Therefore, $U_{f}:|x,(|0\rangle-|1\rangle)\rangle=|x, f(x)\rangle-|x, 1 \oplus f(x)\rangle$
We will evaluate $|x, f(x)\rangle-|x, 1 \oplus f(x)\rangle$
for one of the functions $f(x)$ as an example.
\#1: $\quad f(x)=0, \quad 0 \rightarrow 0, \quad 1 \rightarrow 0$

$$
\begin{aligned}
& \left.\begin{array}{ll}
x=|0\rangle & |x, f(x)\rangle-|x, 1 \oplus f(x)\rangle=|0,0\rangle-|0,1\rangle \\
x=|1\rangle & |x, f(x)\rangle-|x, 1 \oplus f(x)\rangle=|1,0\rangle-|1,1\rangle
\end{array}\right\}=(*) \\
& \left(*_{x}\right)=\begin{array}{l}
\begin{array}{c}
\left.\downarrow^{x}\right\rangle \\
|1\rangle(10\rangle-|1\rangle) \\
\uparrow_{x}
\end{array} \\
\\
=1 \text { since } f(x)=0
\end{array}
\end{aligned}
$$

Q.E.D

Class exercise: prove that for other possible $f(x)$ functions (see page 1), we get

$$
|x, f(x)\rangle-|x, 1 \oplus f(x)\rangle=(-1)^{f(x)}|x\rangle(|0\rangle-|1\rangle)
$$

If $f(x)=1$, then $1 \oplus f(x)=0 \Rightarrow$

$$
|x, f(x)\rangle-|x, 1 \oplus f(x)\rangle=|x, 1\rangle-|x, 0\rangle=(-1)|x\rangle(|0\rangle-|1\rangle)
$$

If $f(x)=0$, then $1 \oplus f(x)=1 \Rightarrow$

$$
|x, f(x\rangle-| x, 1 \oplus f(x)\rangle=|x, 0\rangle-|x, 1\rangle=|x\rangle(|0\rangle-|1\rangle)
$$

Therefore, $\left.\quad|x, f(x)\rangle-|x,| \oplus f(x)\rangle=(-1)^{f(x)}|x\rangle(|0\rangle-11\rangle\right)$
You can also check it by plugging in actual values of x and $\mathrm{f}(\mathrm{x})$ for remaining three cases.

Therefore, we proved that

$$
\begin{aligned}
& \left|\psi_{2}\right\rangle=\left(\frac{\left.(-1)^{f(0)} 10\right\rangle+(-1)^{f(1)}|1\rangle}{\sqrt{2}}\right)\left(\frac{|0\rangle-11\rangle}{\sqrt{2}}\right) \\
& \left|\psi_{2}\right\rangle= \begin{cases} \pm\left[\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right]\left[\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right] & \begin{array}{l}
\text { if } f(0)=f(1) \\
\text { (same signs of } \left.(-1)^{f(0)} \text { and }(-1)^{f(1)}\right)
\end{array} \\
\pm\left[\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right]\left[\frac{|0\rangle-11\rangle}{\sqrt{2}}\right] & \begin{array}{l}
\text { if } \left.f(0) \neq f(1) \text { opposite signs of }(-1)^{f(0)} \text { and }(-1)^{f(1)}\right) \\
\end{array}\end{cases}
\end{aligned}
$$

Applying Hadamard gate to the first qubit gives

$$
\begin{aligned}
& \left|\psi_{3}\right\rangle= \begin{cases} \pm|0\rangle\left[\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right] & \text { if } f(0)=f(1) \\
\pm|1\rangle\left[\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right] & \text { if } \quad f(0) \neq f(1)\end{cases} \\
& f(0) \oplus f(1)=0 \quad \text { if } \quad f(0)=f(1) \quad\left[\begin{array}{lll}
0,0 & \text { or } 1,1
\end{array}\right] \\
& f(0) \oplus f(1)=1 \quad \text { if } \quad f(0) \neq f(1) \quad\left[\begin{array}{lll}
0,1 & \text { or } 1,0
\end{array}\right]
\end{aligned}
$$

Therefore,

$$
\left|\psi_{3}\right\rangle= \pm|f(0) \oplus f(1)\rangle\left[\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right]
$$

Therefore, measurement on the first qubit determines $f(0) \oplus f(1)$, a global property of $f(x)$ using only one evaluation of $f(x)$!

