
There fore, 
will give factors of N.

Lecture 14

Shor's algorithm (quantum factoring algorithm)

First, let's review classical factoring algorithm (again, we will factor N=15 but pick 
different number)

(1) Pick any number y less than 15: y=13.
(2) Calculate f(n)=yn mod 15 and find the period r of f(n).

n=1  13  13 mod 15 = 13 
n=2  132=169  169=15x11+4  132 mod 15 = 4

n=3  shortcut:  133 = (15x11 + 4)x13=15x11x13+4x13

133 mod 15 = 52 mod 15 = 7

n=4  From the above, we can just calculate (7x13) mod 15 = 91 mod 15 =1

Therefore, period r=4. 

(3) Let's suppose that period is even: r=2s. Then,



Note that we assumed

(we know that since s is half period). 

If algorithm fails and we need to pick different y.

Therefore, the problem of factoring reduces to the problem of finding even periods 
r=2s for which the term ys+1 is not equal to 0 (mod N).

The ideas of Shor's algorithm

(1) Evaluate all values of periodic function yn mod N simultaneously.

(2) Adjust the probability amplitudes to get a value of the period r with high 
probability. Note: careful with definition of which probability is considering "high". 
For some purposes, 1/2 is good enough. How? The finite Fourier transform can 
transform cyclic behavior of the periodic function into the enhanced probability 
amplitudes of some states. 

      



Shor's algorithm for factoring N=15

(1) Chose number of qubits so 2n ≥ N. In our case, n=4, 24>N
     Pick y such as gcd(y,N)=1. For example, we pick y=13.

(2) Initialize two quantum registers of n=4 qubits to state 0

|ψ>=|0000>|0000>≡|0>|0>

four qubits  each

|k> states are labeled in the order of binary numbers.

Note on binary numbers: 

Binary addition 

0+1 → 1

1+0 → 1

1 + 1 → 0, carry 1 (since 1 + 1 = 0 + 1 × 10 in binary)

Example: 

  1 1 1 1 1  (carried digits)

    0 1 1 0 1

+   1 0 1 1 1

-------------

= 1 0 0 1 0 0

Therefore, counting in binary we get:

   0      0000        8   1000
   1      0001        9   1001
   2      0010      10   1010
   3      0011      11   1011
   4      0100      12   1100
   5      0101      13   1101
   6      0110      14   1110
   7      0111      15   1111

(3) Randomize the first register, i.e. make the superposition of states with all 
possible four-qubit basis set states:

|0000> →       {|0000> + |0001> + |0010> + … + |1111>}

      



Hadamard gate:

One qubit

Two qubits

H

H

H

H

Four qubits H

H

H

|1> = |0001>
|2> = |0010>
|3> = |0011>

.

.

|15>=|1111>

|k>:       |0> = |0000>
You can think about this step as
generating numbers k=0 … 15 to 
calculate f(k) later.  

We use these labels for our 16 basis set states 
of our four-qubit registers. 

Class exercise: demonstrate that application of  Hadamard gate to each of the 
four qubits  in |0000> register will randomize it.

      



The combined wave function of the two registers after this step is: 

Here is now the function 13k mod (15)
on the second register

k        0     1    2     3       4    5     6    7       8     9    10   11      12    13  14   15

f(k)     1    13   4     7       1   13    4    7       1    13    4     7        1     13   4     7 

Therefore, our state is 

Note that it is done in one operation since due to quantum parallelism we can evaluate all  
values of f(k) simultaneously.

     

(4) Compute the function f(k) = 13k mod (15) on the second register: 

Class exercise:  write out all 16 terms of the |ψ2> wave function. Use designations 

|0> … |15> for both registers. 

Hint: we have already calculated the function 13k mod 15 when we discussed the 
classical algorithm. 

      



and measure the state of the first register.

Since there are no further operations applied to the second register, we can apply
the principle of implicit measurement .  

Principle of implicit measurement: Without loss of generality, any unterminated 
quantum wires (qubits which are not yet measured) at the end of the quantum 
circuit may be assumed to be measured.

Therefore, we can assume that the second register is measured. 

Question for the class: 

If we measure second register in |ψ2>, what possible results can we get and with 

what probabilities?

Therefore, we get a random result |1>, |13>, |4>, or |7> (all probabilities are 1/4)

Suppose we get |4>:

(5) Operate on first four qubits by the finite  Fourier transform F

Our wave function is 

      



The input for quantum Fourier transform is

extra         since function has to be normalize

(equal probabilities

We now apply quantum Fourier transform (QFT)

Let's consider each of four states separately

      



Putting these four terms together, we get

The probability of getting result  |u> after  first register is measured is

SuMMARY:SuMMARY:SuMMARY:SuMMARY:  

The result of the Shor's algorithm is one of the states state |0>, |4>, |8>, or 
|12>, each with equal probability and period r is ur=16k.

We use Maple to calculate Pu for all 16 cases. We get P0=P4=P8=P12=1/4 and 
all other probabilities being zero. Therefore, we can get only states |0>, |4>, |8>,
and |12> with equal probabilities. 

You can check that if we pick other results of the measurement on the  second register, 
i.e. |1>, |13>, or |7>, we still get the same probabilities: P0=P4=P8=P12=1/4 and 
all other probabilities being zero.

Remember, this is the basic idea of the Shor's algorithm: 
Adjust the probability amplitudes to get a value of the period r with high 
probability. In this case, we can prove (by writing Fourier transform sum for all states 
and splitting the sum into two, over single period and over period cycles) that the 
probabilities are non-zero only if 16 divides ur, where r is the period, meaning 

ur=16k

      



So, what is the probability to get correct period from the first try?

|u>=|0> does not give you any information - rerun the algorithm

|u>=|4> gives 4r=16k, lowest k=1: Period is r=4. 

|u>=|8> gives 8r=16k, r=2, incorrect (easily checked) - rerun the algorithm

|u>=|12> gives 12r=16k, k=3    12r=16x3: Period is r=4.

Therefore, the algorithm has 1/2 probability of success from the first run
in this case. 

      


