Lecture 14

Shor's algorithm (quantum factoring algorithm)
First, let's review classical factoring algorithm (again, we will factor $\mathrm{N}=15$ but pick different number)
(1) Pick any number y less than 15: $\mathrm{y}=13$.
(2) Calculate $f(n)=y^{n}$ mod 15 and find the period r of $f(n)$.
$\mathrm{n}=1 \quad 13$
$13 \bmod 15=13$
$\mathrm{n}=2 \quad 13^{2}=169 \quad 169=15 \times 11+4$
$13^{2} \bmod 15=4$
$\mathrm{n}=3$ shortcut: $\quad 13^{3}=(15 \times 11+4) \times 13=15 \times 11 \times 13+4 \times 13$
$13^{3} \bmod 15=52 \bmod 15=7$
$\mathrm{n}=4$ From the above, we can just calculate $(7 \times 13) \bmod 15=91 \bmod 15=\mathbf{1}$
Therefore, period $\mathrm{r}=4$.
(3) Let's suppose that period is even: $\mathrm{r}=2 \mathrm{~s}$. Then,

$$
y^{2 s}=1 \bmod N \quad\left(\text { Remember line } n=4 \Rightarrow y^{n} \bmod 15=1\right.
$$

$$
\begin{aligned}
& y^{2 s}-1=0 \bmod N \\
& \left(y^{s}-1\right)\left(y^{s}+1\right)=k N
\end{aligned}
$$

$$
(N=15)
$$

There fore,

$$
\operatorname{gcd}\left(y^{s} \pm 1, N\right) \text { will give factors of } N
$$

$$
\begin{aligned}
& 13^{2}-1=168 \quad \operatorname{gcd}(168,15)=\operatorname{gcd}(15,3)=3 \\
& \quad[\text { since } 168=15 \times 11+3] \\
& 13^{2}+1=170 \quad \operatorname{gcd}(170,15)=\operatorname{gcd}(15,5)=5 \\
& \quad[\text { since } 170=15 \times 11+5] \\
& 168 \cdot 170=1904 \times 3 \times 5
\end{aligned}
$$

Note that we assumed $y^{s}+1 \neq 0 \bmod N$ (we know that since s is half period).
If $y^{s}=-1 \bmod N$ algorithm fails and we need to pick different y.
Therefore, the problem of factoring reduces to the problem of finding even periods $r=2 s$ for which the term $y^{s}+1$ is not equal to $0(\bmod N)$.

The ideas of Shor's algorithm

(1) Evaluate all values of periodic function y^{n} mod N simultaneously.
(2) Adjust the probability amplitudes to get a value of the period r with high probability. Note: careful with definition of which probability is considering "high". For some purposes, $1 / 2$ is good enough. How? The finite Fourier transform can transform cyclic behavior of the periodic function into the enhanced probability amplitudes of some states.

Shor's algorithm for factoring $\mathbf{N}=15$

(1) Chose number of qubits so $2^{n} \geq \mathrm{N}$. In our case, $\mathrm{n}=4,2^{4}>\mathrm{N}$

Pick y such as $\operatorname{gcd}(\mathrm{y}, \mathrm{N})=1$. For example, we pick $\mathrm{y}=13$.
(2) Initialize two quantum registers of $n=4$ qubits to state 0

$$
|\psi>=|0000>|0000>\equiv| 0>| 0>
$$

(3) Randomize the first register, i.e. make the superposition of states with all possible four-qubit basis set states:
$\left.\left|0000>\rightarrow \frac{1}{\sqrt{16}}\{|0000\rangle+|0001\rangle+|0010\rangle+\ldots+|1111\rangle\}=\sum_{k=0}^{15} \frac{1}{\sqrt{16}}\right| k\right\rangle$
|k> states are labeled in the order of binary numbers.

Note on binary numbers:

Binary addition

$0+1 \rightarrow 1$
$1+0 \rightarrow 1$
$1+1 \rightarrow 0$, carry 1 (since $1+1=0+1 \times 10$ in binary)
Example:

Class exercise: demonstrate that application of Hadamard gate to each of the four quits in $\mid 0000>$ register will randomize it.
Hadamard gate: $\quad|0\rangle \rightarrow \frac{|0\rangle+11\rangle}{\sqrt{2}} \quad 117 \rightarrow \frac{|0\rangle-11\rangle}{\sqrt{2}}$
One qubit 10$\rangle=\mathrm{H} \frac{|0\rangle+|1\rangle}{\sqrt{2}}=\sum_{k=0}^{1} \frac{1}{\sqrt{2}}|k\rangle$

Two quits

$$
\left.\begin{array}{l}
\text { \#1 } 10\rangle-\frac{|0\rangle+|1\rangle}{\sqrt{2}} \\
10\rangle-\mathrm{H}-\frac{|0\rangle+11\rangle}{\sqrt{2}}
\end{array}\right\}\left(\frac{10\rangle+11\rangle}{\sqrt{2}}\right) \otimes\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right)=
$$

Four quits

$$
\left.\begin{array}{ll}
|k>: \quad| 0>=\mid 0000> \\
& |1>=| 0001> \\
& |2>=| 0010> \\
& |3>=| 0011> \\
& |15>=| 1111>
\end{array}\right\} \quad \begin{aligned}
& \text { You can think about this step as } \\
& \\
& \\
& \\
& \text { generating numbers } k=0 \ldots 15 \text { to } \\
& \text { calculate } f(k) \text { later. } \\
& \text { We use these labels for our } 16 \text { basis set states } \\
& \text { of our four-qubit registers. }
\end{aligned}
$$

The combined wave function of the two registers after this step is:

$$
\left|\psi_{1}\right\rangle=\sum_{k=0}^{15} \frac{1}{\sqrt{16}}|k\rangle|0\rangle
$$

(4) Compute the function $f(k)=13^{k} \bmod (15)$ on the second register:

$$
\begin{aligned}
&\left.\left|\psi_{2}\right\rangle=\sum_{k=0}^{15} \frac{1}{\sqrt{16}}|k\rangle|f(k)\rangle=\frac{1}{\sqrt{16}}(10\rangle|f(0)\rangle+|1\rangle|f(1)\rangle+\ldots\right) \\
& \begin{array}{l}
\text { Here is now the function } 13^{k} \bmod (15) \\
\text { on the second register }
\end{array}
\end{aligned}
$$

Class exercise: write out all 16 terms of the $\left|\psi_{2}\right\rangle$ wave function. Use designations |0> ... |15> for both registers.
Hint: we have already calculated the function 13 k mod 15 when we discussed the classical algorithm.

k	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$f(k)$	1	13	4	7	1	13	4	7	1	13	4	7	1	13	4	7

Therefore, our state is

$$
\begin{aligned}
\left|\psi_{2}\right\rangle= & \frac{1}{\sqrt{16}}(|0\rangle|1\rangle+|1\rangle|13\rangle+|2\rangle|4\rangle+|3\rangle 17\rangle \\
& +|4\rangle|1\rangle+|5\rangle|13\rangle+|6\rangle|4\rangle+|7\rangle 17\rangle \\
& +|8\rangle 11\rangle+|9\rangle 113\rangle+|10\rangle|4\rangle+|11\rangle 17\rangle \\
& +|12\rangle 11\rangle+|13\rangle 113\rangle+|14\rangle|4\rangle+|15\rangle 17\rangle)
\end{aligned}
$$

Note that it is done in one operation since due to quantum parallelism we can evaluate all values of $f(k)$ simultaneously.
(5) Operate on first four quits by the finite Fourier transform F

$$
|k\rangle \rightarrow \frac{1}{\sqrt{16}} \sum_{u=0}^{15} e^{\frac{2 \pi i u k}{16}}|u\rangle
$$

and measure the state of the first register.
Since there are no further operations applied to the second register, we can apply the principle of implicit measurement .

Principle of implicit measurement: Without loss of generality, any unterminated quantum wires (quits which are not yet measured) at the end of the quantum circuit may be assumed to be measured.

Therefore, we can assume that the second register is measured.

Question for the class:

If we measure second register in $\left|\psi_{2}\right\rangle$, what possible results can we get and with what probabilities?

Our wave function is

$$
\begin{aligned}
\left|\psi_{2}\right\rangle= & \left.\frac{1}{\sqrt{16}}(10\rangle|1\rangle+|1\rangle|13\rangle+|2\rangle|4\rangle+|3\rangle 17\right\rangle \\
& +|4\rangle|1\rangle+|5\rangle|13\rangle+|6\rangle 14\rangle+|7\rangle 17\rangle \\
& +|8\rangle|1\rangle+|9\rangle 113\rangle+|10\rangle|4\rangle+|11\rangle 17\rangle \\
& +|12\rangle 11\rangle+|13\rangle 113\rangle+|14\rangle|4\rangle+|15\rangle 17\rangle)
\end{aligned}
$$

Therefore, we get a random result $|1>,|13>| 4>$,, or $| 7>$ (all probabilities are $1 / 4$)

$$
\begin{aligned}
& \text { Suppose we get |4>: } \\
& \left.\left|\psi_{2}\right\rangle=\frac{1}{\sqrt{16}}(10\rangle 11\right\rangle+|1\rangle|13\rangle+|2\rangle|4\rangle+\begin{array}{c}
\text { superposition will collapse } \\
\text { and only these four }
\end{array} \\
& +|4\rangle|1\rangle+|5\rangle 113\rangle+|6\rangle 14\rangle+|7\rangle 17\rangle \\
& +|8\rangle 11\rangle+|97113\rangle+|10\rangle 14\rangle+|11\rangle 17\rangle \\
& +|12\rangle|1\rangle+|13\rangle 113\rangle+|14\rangle|4\rangle+|15\rangle 17\rangle) .
\end{aligned}
$$

The input for quantum Fourier transform is

$$
\left.\left.\left.\left|\psi_{3}\right\rangle=\sqrt{\frac{4}{16}}(12\rangle+16\right\rangle+110\right\rangle+1147\right)
$$

extra $\sqrt{4}$ since function has to be normalize
If $|\psi\rangle=\alpha|00\rangle+\alpha|01\rangle+\alpha|10\rangle+\alpha|11\rangle$ (equal probabilities) $\quad|4 \alpha|^{2}=1$

We now apply quantum Fourier transform (QFT)

$$
|k\rangle \rightarrow \frac{1}{\sqrt{16}} \sum_{u=0}^{15} e^{\frac{2 \pi i u k}{16}}|u\rangle
$$

Let's consider each of four states separately

$$
\begin{aligned}
& 12\rangle \rightarrow \frac{1}{\sqrt{16}} \sum_{u=0}^{15} e^{\frac{2 \pi i u \cdot 2^{\iota^{k}}}{16}}|u\rangle \\
& 16\rangle \rightarrow \frac{1}{\sqrt{16}} \sum_{n=0}^{15} e^{2 \pi i u \iota^{k} / 16}|u\rangle \\
& 1107 \rightarrow \frac{1}{\sqrt{16}} \sum_{n=0}^{15} e^{2 \pi i u 10^{k} / 16} \quad|u\rangle \\
& 1147 \rightarrow \frac{1}{\sqrt{16}} \sum_{n=0}^{15} e^{2 \pi i u 14 / 16}|u\rangle
\end{aligned}
$$

Putting these four terms together, we get

$$
\begin{aligned}
& \left|\psi_{4}\right\rangle=\underbrace{\sqrt{\frac{4}{16}} \frac{1}{\sqrt{16}}}_{1 / 8} \sum_{u=0}^{15}|u\rangle\left\{e^{2 \pi i \cdot 2 / 16}+e^{2 \pi i u 6 / 16}\right. \\
& \left.\left.+e^{2 \pi i u 10 / 16}+e^{2 \pi i u 14 / 16}\right\}=\frac{1}{8} \sum_{u=0}^{15} 1 u\right\rangle A_{u}
\end{aligned}
$$

The probability of getting result |u> after first register is measured is

$$
P_{u}=\left|\frac{1}{8} A_{u}\right|^{2}
$$

We use Maple to calculate P_{u} for all 16 cases. We get $P_{0}=P_{4}=P_{8}=P_{12}=1 / 4$ and all other probabilities being zero. Therefore, we can get only states $|0\rangle,|4\rangle,|8\rangle$, and |12> with equal probabilities.

You can check that if we pick other results of the measurement on the second register, i.e. $|1>| 13>$,, or $\mid 7>$, we still get the same probabilities: $P_{0}=P_{4}=P_{8}=P_{12}=1 / 4$ and all other probabilities being zero.

Remember, this is the basic idea of the Shor's algorithm:
Adjust the probability amplitudes to get a value of the period r with high probability. In this case, we can prove (by writing Fourier transform sum for all states and splitting the sum into two, over single period and over period cycles) that the probabilities are non-zero only if 16 divides ur, where r is the period, meaning

$$
\mathrm{ur}=16 \mathrm{k}
$$

SUMMARY:

The result of the Shor's algorithm is one of the states state $|0>| 4,\rangle,|8\rangle$, or | $12>$, each with equal probability and period r is $u r=16 \mathrm{k}$.

So, what is the probability to get correct period from the first try?
$|u>=| 0>$ does not give you any information - rerun the algorithm
$|u>=| 4>$ gives $4 r=16 k$, lowest $k=1$: Period is $\mathbf{r}=4$.
$|u>=| 8>$ gives $8 r=16 k, r=2$, incorrect (easily checked) - rerun the algorithm
$|u\rangle=\mid 12>$ gives $12 r=16 k, k=3 \quad 12 r=16 \times 3$: Period is $\mathbf{r}=4$.
Therefore, the algorithm has 1/2 probability of success from the first run in this case.

