Lecture 12

Universal quantum gates

Single qubit + CNOT gates

Single qubit and CNOT gates together can be used to implement an arbitrary twolevel unitary operation on the state space of n qubits.

Suppose U is a two-level unitary matrix which acts non-trivially on the space spanned by the computational basis states $|s\rangle$ and $|t\rangle$, where $s = s_1 \dots s_n$ and $t = t_1 \dots t_n$. Let \widetilde{U} be non-trivial 2 x 2 unitary submatrix of U.

	(a	0	0	0	0	0	0	b	
	0	1	0	0	0	0	0	0	
	0	0	1	0	0	0	0	0	
T 7	0	0	0	1	0	0	0	0	$\widetilde{U} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$
U =	0	0	0	0	1	0	0	0	$\begin{bmatrix} c & - \\ c & d \end{bmatrix}$
	0	0	0	0	0	1	0	0	
	0	0	0	0	0	0	1	0	
	c	0	0	0	0	0	0	d	

Goal: to construct a circuit implementing U from single qubit and CNOT gates.

Use Gray codes: A Gray code connecting binary numbers s and t is a sequence of binary numbers, starting with s and concluding with t, such that adjacent members of the list differ in one bit.

Example: s=101001, t=110011.

Gray code $g_1 \ldots g_m$, $g_1 = s$, $g_m = t$:

Basic idea of the quantum circuit implementing U

- Swap the states $|g_1
 angle$ and $|g_2
 angle.$
- Swap the states $|g_2\rangle$ and $|g_3\rangle$ and continue until we swap $|g_{m-2}\rangle$ and $|g_{m-1}\rangle$.
- Apply a controlled- \widetilde{U} operation, with the target qubit located at the single bit where g_{m-1} and g_m differ.
- Undo the swap operations: swap $|g_{m-2}\rangle$ and $|g_{m-1}\rangle$, and so on until $|g_2\rangle$ and $|g_1\rangle$ are swapped.

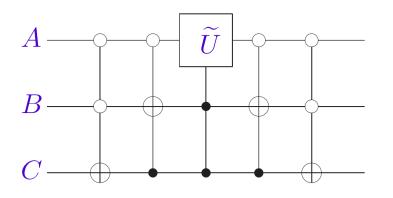
Example: consider the U gate on the previous page.

Question for the class: what logical operation does gate U perform?

$ \begin{array}{c} U \\ 000> \rightarrow \\ 001> \rightarrow \\ 010> \rightarrow \\ 101> \rightarrow \\ 100> \rightarrow \\ 110> \rightarrow \\ 111> \rightarrow \\ \end{array} $	$ \begin{array}{ c c c c c } & U & & & \\ 000> \rightarrow a 000>+c 111> & \\ 001> \rightarrow 001> & \\ 010> \rightarrow 010> & \\ 011> \rightarrow 011> & \\ 100> \rightarrow 100> & \\ 101> \rightarrow 101> & \\ 110> \rightarrow 110> & \\ 111> \rightarrow b 000>+d 111> & \\ \end{array} $

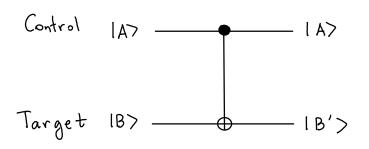
Since the U acts non-trivially only on states |000> and |111>, the Gray codes is

The circuit to implement the gate U is:



REVIEW: Controlled operations: "If A is true, then do B"

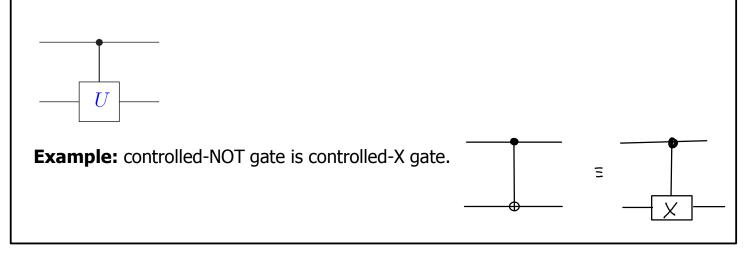
Controlled-NOT (CNOT) gate



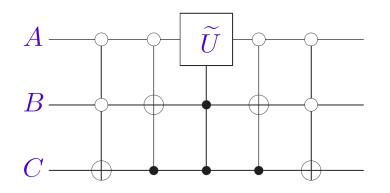
IAB>	ΙΑΒ'>
1007	1007
1017	1017
1107	1117
1117	1107

More on controlled operations

Suppose U is an arbitrary single qubit unitary operation. A controlled-U operation is a two-qubit operation with a control qubit and a target qubit. If control qubit is set, then U is applied to the target qubit.

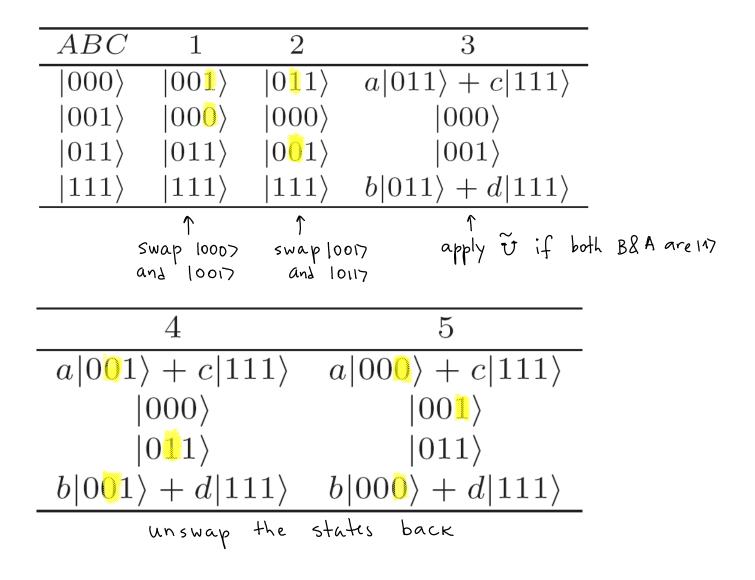


The circuit to implement the gate U is:



Class exercise: work out what this circuit does gate by gate.

Hint: you only need to keep track on four states listed in the Gray code as the remaining four states are not affected at all.



Measurement

Principle of deferred measurement: Measurements can always be moved from an intermediate stage of a quantum circuit to the end of the circuit.

Principle of implicit measurement: Without loss of generality, any unterminated quantum wires (qubits which are not yet measured) at the end of the quantum circuit may be assumed to be measured.

In order for a measurement to be reversible, it must reveal no information about the quantum system being measured!

Summary of the quantum circuit model of computation

- **Classical resources.** For example, many schemes for quantum error-correction involve classical computations to maximize efficiency.
- A suitable state space. For a quantum circuit operating on n qubits the state space is 2^n dimensional Hilbert space. Computational basis: $|x_1 ... x_n \rangle$, where $x_i = 0, 1$.
- Ability to prepare states in the computational basis. (Any computational basis state can be prepared in at most n steps.)
- Ability to perform quantum gates. The set of Hadamard + phase + CNOT $+\pi/8$ gates is universal.
- Ability to perform measurements in the computational basis.