Lecture 10

Quantum error correction

Classical error correction
Modern computers: failure rate is below one error in 10^{17} operations Data transmission and storage (file transfers, cell phones, DVD, CD, etc.): noise problems

Solution: use error-correcting codes to protect against the effect of noise. Key idea: encode the message with redundant information. Redundancy in the encoded message allows to recover the information in the original message.

Classical error correction: repetition code

Example: sending one bit of information across noisy channel.
Effects of the noise: flip the bit with probability p .
Binary symmetric channel:

Solution: protect the information by making three copy of the bit:
$0 \rightarrow 000$
$1 \rightarrow 111$
$\begin{array}{lll}\text { Decoding: "majority voting" } & 011 & 0 \\ & \text { vote } & 1: 2\end{array}$ therefore, flip 0 back to $1: 001 \rightarrow 111$

Note: in this scheme it is impossible to recover the information correctly if more than one bit is flipped.

Probability of error in the non-encoded message: p.
Question for the class: what is the probability of error in the three-bit repetition code if the probability of the bit flip is p ?
(1) Probability that two bits are flipped:

(2) Probability that three bits are flipped is $\mathrm{p}^{3}: 000 \longrightarrow 111$ (p p p).

Total probability of error p_{e} is $p_{e}=3 p^{2}(1-p)+p^{3}=3 p^{2}-2 p^{3}$

Question for the class: under what circumstances three-bit repetition code is less reliable than the original unencoded transmission?
$\mathrm{p}_{\mathrm{e}}>\mathrm{p}$ if $3 \mathrm{p}^{2}-2 \mathrm{p}^{3}>\mathrm{p} \longrightarrow \mathrm{p}>1 / 2$

Therefore, three - bit repetition code is less reliable than original one-bit transmission if error rate for a single bit flip exceeds $1 / 2$.

Many clever ideas have been developed for error-correcting codes, always involving redundancy.

Quantum error correction

Major difficulties:

(1) No cloning: we can not just duplicate quit three or more times as in the classical case.
(2) Errors are continuous:

A continuum of different errors may occur on a single qubit. Therefore, determination of which error occurred requires infinite precision and infinite resources.
(3) Measurement collapses the wave function; recovery is impossible if quantum superposition is destroyed.

None of these problems is fatal and all issues may be overcome.

The three quit bit flip code

Example: sending the quit through a channel which flips quit with probability p . The state $|\psi\rangle$ is changed to state $X|\psi\rangle$.

Reminder: X gate switches |0> and |1>

$$
\left(\begin{array}{l}
x: \quad \alpha|0\rangle+\beta|1\rangle \xrightarrow{x} \alpha|17+\beta| 0\rangle \\
x=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad x\binom{\alpha}{\beta}=\binom{\beta}{\alpha} \\
|\psi\rangle \xrightarrow{p} x \mid \psi 7 \quad(\text { bit flip) }
\end{array}\right.
$$

How does three bit flip code work?
We encode the qubit $\alpha|0\rangle+\beta|1\rangle$ in three quits as follows:

$$
\alpha|0\rangle+\beta|1\rangle \alpha|000\rangle+\beta|111\rangle
$$

$$
\left.|0\rangle \rightarrow|0\rangle_{L} \equiv 1000\right\rangle
$$

$$
|1\rangle \rightarrow|1\rangle_{L} \equiv|111\rangle
$$

"Logical qubits"

Superpositions of basis states are taken to corresponding superpositions of encoded states.

Exercise to the class: demonstrate that the logic circuit below implements three bit flip encoding.

(flip control quit if target quit is $\mid 1>$)

$$
\begin{aligned}
&\left|\psi_{0}\right\rangle=\alpha|\underbrace{000}\rangle+\beta \mid \underbrace{1007}_{\uparrow} \\
& \text { CNOT: } \\
&\left|\psi_{1}\right\rangle= \alpha|000\rangle+\beta \mid 1 \underbrace{100}_{l_{i p}} 10 \rightarrow 11 \\
& \text { second CNOT: } \\
& \text { flip } 10 \rightarrow 11 \\
&\left|\psi_{2}\right\rangle=\alpha|000\rangle+\beta|111\rangle
\end{aligned}
$$

How does this three-bit flip code works?
Suppose bit flip occurs on one or less qubits. Two-step error correcting procedure is used. Note: each of the qubits is passed through the independent bit-flip channel. Error syndrome diagnosis (or error-detection): we perform the measurement telling us which error, if any, occurred on the quantum state. The measurement result is called the error syndrome.

For the bit-flip channel, there are four error syndromes corresponding to four projection operators:

$$
\begin{array}{ll}
P_{0} \equiv|000\rangle\langle 000|+|111\rangle\langle 111| & \text { no error } \\
P_{1} \equiv|100\rangle\langle 100|+|011\rangle\langle 011| & \text { bit flip on qubit \#1 } \\
P_{2} \equiv|010\rangle\langle 010|+|101\rangle\langle 101| & \text { bit flip on qubit \#2 } \\
P_{3} \equiv|001\rangle\langle 001|+|110\rangle\langle 110| & \text { bil flip on qubit \#3 }
\end{array}
$$

Suppose the bit flip occurred on qubit \#1.
Then, the corrupted state is

$$
|\psi\rangle=\alpha|100\rangle+\beta|011\rangle .
$$

Note that $\langle\psi| p_{1}|\psi\rangle=1$
Proof: $P_{1}|\psi\rangle=[|100\rangle\langle 100|+|011\rangle\langle 011|](\alpha|100\rangle+\beta|011\rangle)$
$=\alpha|100\rangle+\beta 1011\rangle$
$\langle\psi| p_{1}|\psi\rangle=\left(\langle 100| \alpha^{*}+\langle 011| \beta^{*}\right)(\alpha|100\rangle+\beta|011\rangle)$
$=\alpha^{*} \alpha+\beta^{*} \beta=1$
State of the system after measurement is $\frac{P_{m}|\psi\rangle}{\sqrt{p(m)}} ; p(m\rangle=\langle\psi| P_{m}|\psi\rangle$
$m=1 \Rightarrow$
It is the same as before the measurement $\quad P_{1}|\psi\rangle=|\psi\rangle=\alpha|100\rangle+\beta|011\rangle$.
Therefore, the result of the measurement is 1 with 100% probability and the measurement does not change the state. We now have the information about which error occurred but we learned nothing about α or β.

Recovery: the value of the error syndrome is used to recover the initial state. The four possible error syndromes and the recovery procedures in each case are:
0 (no error) - do nothing
1(bit flip on the first qubit) - flip the first qubit again (use X gate)
2 (bit flip on the second qubit) - flip the second qubit again
3 (bit flip on the third qubit) - flip the third qubit again

Exercise for the class:
What is the corrupted state $|\psi\rangle$ if the bit flip occurred on quit \#3?
Show that $p(3)=1$ and $P_{3}|\psi\rangle=|\psi\rangle$, so that the detection of this error by measurement will not change the state of the system.

$$
\begin{aligned}
&|\psi\rangle=\alpha|001\rangle+\beta|110\rangle \\
& P_{3}|\psi\rangle=|001\rangle\langle 001|(\alpha 1001\rangle+\beta|110\rangle) \\
&+|110\rangle\langle 110|(\alpha 1001\rangle+\beta|110\rangle)=\alpha 1001\rangle+\beta|110\rangle \\
& P(3)=\langle\psi| P_{3}|\psi\rangle=\left(\langle 001| \alpha^{*}+\langle 110| \beta^{*}\right) \\
&(1001\rangle \alpha+1110\rangle \beta)=\alpha^{*} \alpha+\beta^{*} \beta=1
\end{aligned}
$$

