Lecture 10

Quantum error correction

Classical error correction

Modern computers: failure rate is below one error in 1017 operations
Data transmission and storage (file transfers, cell phones, DVD, CD, etc.):
noise problems

Solution: use error-correcting codes to protect against the effect of noise.
Key idea: encode the message with redundant information. Redundancy
in the encoded message allows to recover the information in the original
message.

Classical error correction: repetition code

Example: sending one bit of information across noisy channel.
Effects of the noise: flip the bit with probability p.

Binary symmetric channel:
I-p

Solution: protect the information by making three copy of the bit:

0 — 000
1111

Decoding: "majority voting" [011]| O
vote 1:

1
2 therefore, flip 0 back to 11001 — 111

Note: in this scheme it is impossible to recover the information correctly if more than
one bit is flipped.
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Probability of error in the non-encoded message: p.

Question for the class: what is the probability of error in the three-bit
repetition code if the probability of the bit flip is p?

(1) Probability that two bits are flipped:

probability p probability

] correct transmission
Ao
000 % 101

011 \Total probability is 3p2(1-p).

(2) Probability that three bits are flipped is p3: 000 ——=> 111 (p p p).

Total probability of error pe is pe=3p?(1-p) + p3 = 3p? - 2p3

Question for the class: under what circumstances three-bit repetition code is
less reliable than the original unencoded transmission?

pe> pif 3p2-2p3>p——=> p>1/2

Therefore, three - bit repetition code is less reliable than original one-bit
transmission if error rate for a single bit flip exceeds 1/2.

Many clever ideas have been developed for error-correcting codes, always
involving redundancy.
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Quantum error correction

Major difficulties:

(1) No cloning: we can not just duplicate qubit three or more times as in the classical
case.

(2) Errors are continuous:
A continuum of different errors may occur on a single qubit. Therefore, determination
of which error occurred requires infinite precision and infinite resources.

(3) Measurement collapses the wave function; recovery is impossible if quantum
superposition is destroyed.

None of these problems is fatal and all issues may be overcome.

The three qubit bit flip code

Example: sending the qubit through a channel which flips qubit with probability p.
The state |y> is changed to state X |y>.

Reminder: X gate switches |0> and |1>

X

X : Aoy + flﬂ — Al47 + Flm
(1) (-

P
4y = x 47 (bt )

How does three bit flip code work?

We encode the qubit °<\07 -+ j\’D in three qubits as follows:

Aoy + f\ 5 —w iloooy + F\ui)

| 07 = \07L = |loo0 7y
| 1y = |4y, =14117

T

"Logical qubits"
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Superpositions of basis states are taken to corresponding superpositions of encoded
states.

Exercise to the class: demonstrate that the logic circuit below implements three
bit flip encoding.

7= oLloy + pi1y l T

lo)y; e,
107 D
i) 4 T
Woy vy RV
Reminder: CNOT gate looy = 1007
o1 = 101y
107 =111y
D 1117 — 1407
(flip control qubit if target qubit is |1>)

V,7 =kl 0007 + f)li_oJo7

)
ChoT: Q&\o Ao =) 41
1= dloooy + pl4a0y
| _ )
Sewn CANOT . ’Qe/\‘() A0 9 17

\WV,7 = Llooov ~+ 11447

How does this three-bit flip code works?

Suppose bit flip occurs on one or less qubits. Two-step error correcting procedure is
used. Note: each of the qubits is passed through the independent bit-flip channel.
Error syndrome diagnosis (or error-detection): we perform the measurement
telling us which error, if any, occurred on the quantum state. The measurement result
is called the error syndrome.
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For the bit-flip channel, there are four error syndromes corresponding to four projection
operators:

Po = |ooo 74000\ + 1117 < 4a4] no evero r

v 2 Moov<¢400| 4 )V ownseonl bik ‘G&\o on olul'o\—l'?“_
Po = loovcoio| + |4017<401) bit f&'r, on oubit #2
P3 = \Ooi7<ool\ + 440y < 110| il ﬁ&'P on q/hlo"‘é43

Suppose the bit flip occurred on qubit #1.
Then, the corrupted state is

Y5 = &) Ltooy ~+ JB\O_Li7.

Notethat< ¥ [ Pa) &> = 4

Proof: P,L\'\J(7 = [ 14007 « 400| + \o117<o'\1\](&\‘00>+ Jslmm)

= Al 1007 = F\O1’\7
Zaplpalaby = ( 44001&* + <o\ \ jﬁ)( AlM1oo7 + /&101\7)

:ol)*oL“' J‘Effé:i_

P

State of the system after measurement is —Yl_lqil > P (mY) = <,"{*] P Y7
V & ()

Mm= 4 =

It is the same as before the measurement P4l %7 = [+ 7 = L1007+ plo117.

Therefore, the result of the measurement is 1 with 100% probability and the
measurement does not change the state. We now have the information about which
error occurred but we learned nothing about o or B.

Recovery: the value of the error syndrome is used to recover the initial state. The four possible
error syndromes and the recovery procedures in each case are:

0 (no error) - do nothing

1(bit flip on the first qubit) - flip the first qubit again (use X gate)
2 (bit flip on the second qubit) - flip the second qubit again

3 (bit flip on the third qubit) - flip the third qubit again
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Exercise for the class:
What is the corrupted state 47 if the bit flip occurred on qubit #3?

Show that p(3)=1and P2 W7 =47, so that the detection of this error by
measurement will not change the state of the system.

v 7 =dloo|7 +¢|41o7

Pr1¥7 = loovy <ool) (10015 -\-(5\4’LO7>
+ [4407 € 110\ (dloo Y +rsl’t’lo7) =,,L\oom+/g\uo7

‘)(33 = <N | Py lwT7 = (400\1 o+ <llO’f5¥)

(\00\7 ol + 410 rev = oLHLoL + f, ﬁ = 41
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