Atomic clocks

Clocks

Ingredients for a clock

1. Need a system with periodic behavior: it cycles occur at constant frequency

2. Count the cycles to produce time interval
3. Agree on the origin of time to generate a time scale

Quartz Clock

The quartz clock keeps better time than the best mechanical clocks. It contains a specially cut quartz crystal that vibrates at a particular frequency when voltage is applied. The vibrations can be sustained in an electrical circuit and will generate a signal of constant frequency that can be used to keep time.

Quartz Clock

The quartz clock keeps better time than the best mechanical clocks. It contains a specially cut quartz crystal that vibrates at a particular frequency when voltage is applied. The vibrations can be sustained in an electrical circuit and will generate a signal of constant frequency that can be used to keep time.

Cesium microwave atomic clock

Current definition of a second:

1967: the second has been defined as the duration of 9192631770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the cesium 133 atom.

1997: the periods would be defined for a cesium atom at rest, and approaching the theoretical temperature of absolute zero (0 K).

A gas of cesium atoms enters the clock's vacuum chamber. Six lasers slow the movement of the atoms, cooling them to near absolute zero and force them into a spherical cloud at the intersection of the laser beams.

The ball is tossed upward by two lasers through a cavity filled with microwaves. All of the lasers are then turned off.

Cesium atomic clock

Gravity pulls the ball of cesium atoms back through the microwave cavity. The microwaves partially alter the atomic states of the cesium atoms.

Cesium atomic clock

Cesium atoms that were altered in the microwave cavity emit light when hit with a laser beam.

This fluorescence is measured by a detector (right).
The entire process is repeated many times while the microwave energy in the cavity is tuned to different frequencies until the maximum fluorescence of the cesium atoms is determined.

This point defines the natural resonance frequency of cesium, which is used to define the second.

NIST Cs clock

How to build a better clock?

How good is a clock: stability

Stability is a measure of the precision with which we can measure a quantity.

It is a function of averaging time since for many noise processes the precision increases (i.e., the noise is reduced through averaging) with more measurements.

Poli et al. "Optical atomic clocks", arXiv:1401.2378v2

How good is a clock: uncertainty

In contrast, the (absolute)

uncertainty for an

atomic clock tells us how well we understand the physical processes that can shift the measured frequency from its unperturbed ("bare"), natural atomic frequency.

Requires extensive evaluation of all known physical shifts (usually called "systematic effects").

Clock instability

Let us first consider the formula for clock instability, σ_{y}, in the regime where it is limited by fundamental (as opposed to technical) noise sources, such as atomic statistics based on the number of atoms:
spectroscopic linewidth of the clock system

How to build a better clock?

From microwave to optical frequencies

Cesium clock

9×10^{9} periods per second

Strontium optical atomic clock

4.3×10^{14} periods per second Image credit: Ye group and Steven Burrows, JILA

Ingredients for an atomic clock

1. Atoms are all the same and will oscillate at exactly the same frequency (in the same environment): you now have a perfect oscillator!
2. Take a sample of atoms (or just one)
3. Build a device that produces oscillatory signal in resonance with atomic frequency

4. Count cycles of this signal

What is a clock?

atomic oscillator

Schematic view of an optical atomic clock: the local oscillator (laser) is resonant with the atomic transition. A correction signal is derived from atomic spectroscopy that is fed back to the laser. An optical frequency synthesizer (optical frequency comb) is used to divide the optical frequency down to countable microwave or radio frequency signals.

From: Poli et al. "Optical atomic clocks", arXiv:1401.2378v2

Counting optical frequencies

Laser frequency (563 nm): $f_{\mathrm{Hg}} / 2 \approx 5 \times 10^{14} \mathrm{~Hz}(!)$
Interclock comparisons:

- Other optical standards (Al+, $\mathrm{Ca}, \mathrm{Yb}, \mathrm{Sr}$, etc.) Difference frequency: $\Delta f \sim 10^{14} \mathrm{~Hz}$
- Microwave standards ($f_{0} \sim 10^{10} \mathrm{~Hz}$)

Difference frequency: $\Delta f \sim 10^{14} \mathrm{~Hz}$
Problem:
Fastest electronic counters: $\sim 100 \mathrm{GHz}\left(10^{11} \mathrm{~Hz}\right)$
Solution:
Femtosecond laser frequency comb
from John Hall's Nobel Lecture

pulse circulating inside cavity

 or emitted periodic pulse train = superposition of discrete modes
spectral comb

repetition rate $=1 / T$

Femtosecond Ti:Sapphire Laser

(a) Time Domain

(b) Frequency Domain

Pulse duration: $\quad \sim 10 \mathrm{fs}\left(10^{-14} \mathrm{~s}\right)$
Repetition rate: $f_{\text {rep }} \approx 1 \mathrm{GHz}\left(10^{9} \mathrm{~Hz}\right)$

Self-referenced optical frequency comb

$$
f_{\text {probe }}=m f_{\text {rep }} \pm f_{o} \pm \delta
$$

Trapped ion probe laser

Offset frequency

Trapped single ion clocks

Requirements for an atomic clock
(1) Long-lived upper clock state
(2) Near optical transition

Neutral atom optical lattice clocks

Sr clock will lose 1 second in 15 billion years !

Nicholson et al., Nature Comm. 6, 6896 (2015) Sr: 2×10^{-18} http://www.nist.gov/pml/div689/20140122_strontium.cfm

Optical vs. microwave clocks

Applications of atomic clocks

GPS

Very Long Baseline Interferometry

Relativistic geodesy

Definition of the second

Quantum simulation

Search for physics beyond the Standard Model

Search for physics beyond the standard model with atomic clocks

Atomic clocks can measure and compare frequencies to exceptional precisions!

If fundamental constants change (now) due to for various "new physics" effects atomic clock may be able to detect it.

