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Ingredients for a clock

1. Need a system with periodic behavior:
it cycles occur at constant frequency

2. Count the cycles to produce time interval
3. Agree on the origin of time to generate a time scale

NOAA/Thomas G. Andrews Ludlow et al., RMP 87, 637 (2015)



QUARTZ CLOCK
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Current definition of a second:

1967: the second has been defined as the duration of

9 192 631 770 periods of the radiation corresponding to the
transition between the two hyperfine levels of the ground
state of the cesium 133 atom.

1997: the periods would be defined for a cesium atom at rest,
and approaching the theoretical temperature of absolute
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A gas of cesium atoms enters
the clock's vacuum chamber.
Six lasers slow the movement
of the atoms, cooling them to
near absolute zero and force
them into a spherical cloud at
the intersection of the laser
beams.
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Cesium atomic clock
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The ball is tossed
upward by two lasers
through a cauvity filled
with microwaves. All of
the lasers are then
turned off.
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Gravity pulls the ball of cesium
atoms back through the microwave
cavity. The microwaves partially alter
the atomic states of the cesium
atoms.

http://www.nist.gov/public_affairs/releases/n99-22.cfm



Cesium atomic clock
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Cesium atoms that were altered in the microwave cavity emit light when hit
with a laser beam.

This fluorescence is measured by a detector (right).

The entire process is repeated many times while the microwave energy in
the cavity is tuned to different frequencies until the maximum fluorescence
of the cesium atoms is determined.

This point defines the natural resonance frequency of cesium, which is
used to define the second.

http://www.nist.gov/public_affairs/releases/n99-22.cfm



NIST Cs clock

http://www.nist.gov/pml/div688/grp50/primary-frequency-standards.cfm



GPS nu‘!lm broadcast radio signals providing
thelr locations, status, and precise time {1}
from on-board atomlc clocks. *
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Frequency Uncertainty
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How to build a better clock?
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How good is a clock: stability

Stability is a measure
of the precision with
which we can measure a
quantity.

It is a function of
averaging time since for
many noise processes
the precision increases
(I.e., the noise is reduced
through averaging) with
more measurements.

Poli et al. “Optical atomic clocks”, arXiv:1401.2378v2



How good is a clock: uncertainty

In contrast, the (absolute)

uncertainty for an
atomic clock tells us how well
we understand the physical
processes that can shift the
measured frequency from its
unperturbed (“bare"), natural
atomic frequency.

Requires extensive evaluation
of all known physical shifts
(usually called “systematic
effects”).




Clock instability

Let us first consider the formula for clock instability, o, in the regime
where it is limited by fundamental (as opposed to technical) noise
sources, such as atomic statistics based on the number of atoms:

spectroscopic linewidth of the clock system

‘1' the time required for a
Tc/ single measurement
— cycle

(r) Av
N T
/’ A \ the averaging period

clock transition
frequency

the number of atoms or
lons used in a single
measurement



How to build a better clock?

Penetrates Earnh's

i A N
Atriosphere?
Fadiaion Type  Radio Microwave Infrared Visible Ultraviolet  X-ray Gamma ray
Wavelength (m) 0.5x1C7¢ 1673 107 107

Approximate Scale
of Wavelength

AL o @

Buildings Humans Buttarflizs Needle Point Frotozoans MNolecules Atams  Atomic Nuclei

10* 108 10 10% 10t 108 10%°

“emperature of
ohjects at which
this radiatan is the

mostintense 1K 100 K 10 000 K 10,300,000 K
wavelenJth emitted : :
J =272 °C =173 °C 9,727 °C ~10,000,000 “C




From microwave to optical frequencies

Cesium clock
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Strontium optical atomic clock

4.3 x 104 periods per second

Image credit: Ye group and Steven Burrows, JILA



Ingredients for an atomic clock

1. Atoms are all the same and will
oscillate at exactly the same
frequency (in the same
environment): you now have a
perfect oscillator!

2. Take a sample of atoms (or just
one)

3. Build a device that produces
oscillatory signal in resonance
with atomic frequency

4. Count cycles of this signal

valentinagurarie.wordpress.com/tag/atom/ Ludlow et al., RMP 87, 637 (2015)



What is a clock?

atomic oscillator

electronic signal e ——— electronic signal
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optical comb

Schematic view of an optical atomic clock: the local oscillator (laser) is resonant with
the atomic transition. A correction signal is derived from atomic spectroscopy that is fed back

to the laser. An optical frequency synthesizer (optical frequency comb) is used to divide the
optical frequency down to countable microwave or radio frequency signals.

From: Poli et al. “Optical atomic clocks”, arXiv:1401.2378v2



Counting optical frequencies

Laser frequency (563 nm): fis/2 & 5 X 10" Hz (1)
Interclock comparisons:

 Other optical standards (Al*, Ca, Yb, Sr, etc.)
Difference frequency: Af ~ 10'* Hz

. Microwave standards {(fo ~ 10'° Hz)
Difference frequency: Af ~ 10'* Hz

Problem:
Fastest electronic counters: ~ 100 GHz (10'! Hz)

Solution:
Femtosecond laser frequency comb

from Jim Bergquist’ talk
e



from John Hall’s Nobel Lecture

Optical
frequency

Q ~ 1014 — 1015

Femtosecond Laser Comb
10%:1 Reduction Gears
(not to scalel)



pulse circulating inside cavity
or emitted periodic pulse train
= superposition of discrete modes
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repetition rate = 1/T
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fromTheodor W. Hansch’s Nobel Lecture



Femtosecond Ti:Sapphire Laser

(a) Time Domain
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Pulse duration:  ~ 10 fs (107 "% s)
Repetition rate: frep ~ 1 GHz (10° Hz)

from Jim Bergquist’ talk
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Hugh Kiein: Optical Clocks and Frequency Memology for Space



Trapped single ion clocks

Requirements for an atomic clock

(1) Long-lived upper clock state
(2) Near optical transition

41145d 2D, , Yb*
PTB
E2 435 nm NPL

4§136s2 2F ),

E3 transition,
highly forbidden

467 nm




Neutral atom optical lattice clocks
Optical Lattices: crystals of light
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http://www.nist.gov/pml/div689/20140122_strontium.cfm

Image: Ye group and Steven Burrows, JILA




Sr clock will lose 1 second in 15 billion years !

Nicholson et al., Nature Comm. 6, 6896 ( ) Sr:
http://www.nist.gov/pml/div689/20140122_ strontium.cfm




Optical vs. microwave clocks
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Applications of atomic clocks
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Image Credits: NOAA, Science 281,1825; 346, 1467, University of Hannover, PTB



Search for physics beyond the standard
model with atomic clocks

Atomic clocks can measure and compare
frequencies to exceptional precisions!

If fundamental constants change (now)
due to for various “new physics” effects
atomic clock may be able to detect it.

Frequency
will change

atomic reference




