
Lecture 9  
Dirac-Hartree-Fock code. Second-order perturbation theory and running second-order 
code. Atomic calculations and the search for the variation of the fine-structure constant.

Dirac-Hartree-Fock code (DHF). To run the code: ./dhf <na.in 

Walter Johnson, "Atomic structure theory"

This is a relativistic code, so the input labels states by principal quantum number n and 

relativistic quantum number κ. The advantage of relativistic quantum number κ is that it specifies 
both angular quantum number and total angular quantum number for the electron. 

Relativistic quantum number 

Its values for a few first states are: 

state(ℓj) κ

s -1

p1/2 1

p3/2 -2

d3/2 2

d5/2 -3

Input for the DHF code

 Na  9  11  23  0  0  11  5  1

 1 -1  0 

 2 -1  0 

 2 1  0 

 2 -2  0 

 3 -1  1 -0.1

 3 1  1 -0.1

 3 -2  1 -0.1

 3 2  1 -0.05

 3 -3  1 -0.05

1.5

 0.00  0.0000  500

 1

 0.00000 2.8853 2.30000

 0

Do not change the input that is crossed 
out below

 Na  9  11  23  0  0  11  5  1

 1 -1  0 

 2 -1  0 

 2 1  0 

 2 -2  0 

 3 -1  1 -0.1

 3 1  1 -0.1

 3 -2  1 -0.1

 3 2  1 -0.05

 3 -3  1 -0.05

1.5

 0.00  0.0000  500

 1

 0.00000 2.8853 2.30000

 0

 Na  9  11  23  0  0  11  5  1  CAREFUL-THIS INPUT IS FORMATTED, DO NOT SHIFT

Line 1
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  Na   9  11  23   0   0  11   5   1

   1  -1   0        

   2  -1   0        

   2   1   0        

   2  -2   0        

   3  -1   1      -0.1      

   3   1   1      -0.1

   3  -2   1      -0.1

   3   2   1      -0.05

   3  -3   1      -0.05

1.5

  0.00  0.0000  500

   1

  0.00000 2.8853 2.30000

   0

  Na   9  11  23   0   0  11   5   1

   1  -1   0        

   2  -1   0        

   2   1   0        

   2  -2   0        

   3  -1   1      -0.1      

   3   1   1      -0.1

   3  -2   1      -0.1

   3   2   1      -0.05

   3  -3   1      -0.05

1.5

  0.00  0.0000  500

   1

  0.00000 2.8853 2.30000

   0

          
  0.00  0.0000  500 This line tells the code to use default radial grid. Do not change.

1

  0.00000 2.8853 2.30000      

This part defines the nuclear charge distribution to be 
the Fermi distribution and gives its parameters:

Parameter c is the 50% radius (I will provide the numbers).
Parameter t=a(4ln3) can be taken 2.3 for all cases. 
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OUTPUT:

       Dirac Hartree Fock Levels for   Na

shell     m   atomic units       breit            qed            f.s.

1s      293    -40.826546376      0.0187383      0.0064254      0.0000297

2s      337     -3.082400565      0.0011619      0.0002717      0.0000018

2p*     345     -1.801417667      0.0014418     -0.0000029      0.0000000

2p      345     -1.794009083      0.0010118      0.0000031      0.0000000

3s      377     -0.182032692      0.0000263      0.0000028      0.0000000

3p*     387     -0.109490451      0.0000127     -0.0000000      0.0000000

3p      387     -0.109416519      0.0000088      0.0000000      0.0000000

3d*     399     -0.055666595      0.0000001     -0.0000000      0.0000000

3d      399     -0.055666801      0.0000000     -0.0000000      0.0000000

     etotal:   -161.8959046      0.0233656      0.0134005

  with val :   -162.0779373      0.0233919      0.0134033

inuc =  4  rnuc = 2.9630fm  rnuc =   0.000056

You only need the part that gives valence energies in atomic units. The code designates
j=ℓ-1/2 states with *, i.e. 3p*=3p1/2 and 3p=3p3/2. We first convert the results into cm-1 using
1 a.u. (energy) =  219474.6314 cm-1 and then subtract out the 3s energy (ground state) since 
NIST database gives the energies relative to the ground state.  We are ready to compare with 
experimental data. Go to 

NIST atomic spectra database (need "LEVELS")
http://www.nist.gov/pml/data/asd.cfm

and type in "Na I". To copy the data, ASCII table might be easier than HTML. The results of our 
comparison are:

Configuration DHF (a.u.) DHF (cm-1) Energy-E(3s) Experiment Diff.(%)

3s -0.182033 -39952 0 0

3p1/2 -0.109490 -24030 15921 16956 6.1%

3p3/2 -0.109417 -24014 15937 16973 6.1%

3d3/2 -0.055667 -12217 27734 29173 4.9%

3d5/2 -0.055667 -12217 27734 29173 4.9%

As you can see, the agreement is pretty good, 5-6%!

To compare the 3s energy scroll down the NIST table until you get to the ionization limit (Na II).
This line looks like: 

Na II (2p6 1S<0>)       | Limit     |      --- |           41449.451(2)  

Note that this is not necessarily the last line in the table! 
This is your 3s removal energy (so it is listed with + sign). The difference between our  value of 
39952cm-1 and experiment  41449.451(2)cm-1 is only 3.6%!
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We can also compare the fine-structure splittings for 3p states with experiment. To do so, subtract 
the 3p3/2 and 3p1/2 energies. DHF code gives 16.2 cm-1 while the experimental result is 17.2 cm-1, i.e. 
5.6% difference. 

Note that the fine-structure splitting for 3d is very small, 0.05cm-1. Note that the fine-structure is 
inverted. 

To improve these results, we will use the second-order perturbation theory. 
As a very quick review, we give a summary of the main results for the non-degenerate perturbation 
theory from the Quantum Mechanics II (425) course. 

Non-degenerate perturbation theory: summary

The problem of the perturbation theory is to find eigenvalues and eigenfunctions of the
perturbed  potential, i.e. to solve approximately the following equation:

using the known solutions of the problem

The first-order energy is given by:

First-order correction to the wave function is given by
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The second-order correction to the energy is

The main feature of the second-order formula is the sum involving summation over ALL 
POSSIBLE states of the atom, including the continuum spectrum. The numerical implementation of 
such sums involves creation of a finite basis set of the atomic wave functions. Practically, such 
basis set may be created by "placing" atom is a spherical box. Then, the summation is reduced to 
a (finite) sum over all basis set states, which is equivalent to summing over all "real" states and 
integration over the continuum. 

The code BASIS will generate a finite basis set constrained to a spherical cavity on a nonlinear 
grid using B-splines. First run ./DHF <na.in to make DHF potential and then run 
./BASIS <spl.in to produce the corresponding finite basis set for the subsequent second-order 
calculations. Then, you can run second-order energy code ./E2 <nae2.in . 

What about first order? In the case of the DHF "frozen-core" starting potential, one can show 
that the first order is zero.

Running of the second-order code for Na

1) Run ./DHF <na.in and ./BASIS <spl.in (do not change spl.in for any homework cases)
2) Run ./E2 <nae2.in

Second-order input (also uses  n κ labels of configurations just as DHF does.)  

4

   1  -1  

   2  -1  

   2   1  

   2  -2  

5

3 -1

3  1

3 -2

3  2

3 -3

0 6 50
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Output gives the state and its second-order energy:

    3   -1 -0.005853626  

    3    1 -0.001775692  

    3   -2 -0.001767014  

    3    2 -0.000225822  

    3   -3 -0.000225818  

These values have to be added to DHF values to obtain the total results. Let's compare the DHF+E2 
results with experiment:

Configuration DHF (a.u.) E2 (a.u.) Total (a.u) Total (cm-1) Energy-E(3s) Expt. Diff.(%)

3s -0.182033 -0.005854 -0.187886 -41236 0 0

3p1/2 -0.109490 -0.001776 -0.111266 -24420 16816 16956 0.83%

3p3/2 -0.109417 -0.001767 -0.111184 -24402 16834 16973 0.82%

3d3/2 -0.055667 -0.000226 -0.055892 -12267 28969 29173 0.70%

3d5/2 -0.055667 -0.000226 -0.055893 -12267 28969 29173 0.70%

Much better results!!! The second-order result for the ionization potential 41236 cm-1 is also in 
much better agreement with experiment, 41449.45cm-1, 0.5%.

Atomic calculations and search for the variation of the fine-structure constant

The modern theories directed toward unifying gravitation with the three other fundamental 
interactions suggest variation of the fundamental constants  in an expanding universe.
Controversial studies of the quasar absorption spectra indicate that the fine-structure constant 
may have been different in a distant past. This result has not been confirmed by other groups 

using a different telescope and the status of the observational search for α-variation is presently 
unclear and  further investigations are required.

Development of ultra-precise atomic clocks allowed laboratory tests of the α-variation at the 
present time. Different optical atomic clocks use  transitions that have different  contributions of 
the relativistic corrections to frequencies. Therefore, comparison of these clocks can be used to 

search for α-variation. Certain atomic systems exhibit much higher sensitivity to the variation of 

α. The sensitivity of atomic transitions to α-variation for both astrophysics and laboratory 
searches is determined from theoretical calculations such as demonstrated below. 

The sensitivity of the atomic transition frequency ω to the variation of the fine-structure constant 

α can be quantified using a coefficient q defined as

The frequency ω0  corresponds to the value of the fine-structure constant α0 at some initial point in 
time. In the experiment, ratio of two frequencies, which is a dimensionless quantity, is studied over 
time. Therefore, it is preferable to select transitions with significantly different values of  q. We note 
that q may be either positive or negative. It is convenient to also define dimensionless  enhancement 

factor K=2q/ω.
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To calculate the value of the sensitivity coefficient q, we carry out three calculations with different 

values of α. In the first calculation, current CODATA value is used. In the other two calculations, the 

value α2 is varied by ±5%. The value of q is then determined as a numerical derivative

q

Let's carry out such calculation for Na states that we have calculated in the previous example.

The version of the DHF code that allow varying the constant α is called DHFa. Its input is the same 

as in the DHF with the exception on the last line that gives the change in α2. 

  Na   9  11  23   0   0  11   5   1

   1  -1   0        

   2  -1   0        

   2   1   0        

   2  -2   0        

   3  -1   1      -0.1      

   3   1   1      -0.1

   3  -2   1      -0.1

   3   2   1      -0.05

   3  -3   1      -0.05

1.5

  0.00  0.0000  500

   1

  0.00000 2.8853 2.30000

   0

0.95

Configuration DHF (cm-1) DHF (α2=0.95α2
0) DHF (α2=1.05α2

0) q K=2q/ω

3s 0 0 0 0 0

3p1/2 15921 15919 15923 39 0.005

3p3/2 15937 15935 15940 56 0.007

3d3/2 27734 27732 27737 51 0.004

3d5/2 27734 27732 27737 51 0.004

As you can see, even such large variation of α2 as 5% produces a very small effect on the 
transition energies in Na, ~2cm-1. 

The results of Na calculation are summarized in the table below. 
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The α-variation effects are significantly enhanced in heavy systems. Here are the results of the 
same calculation for Fr: 

Configuration DHF (cm-1) DHF (α2=0.95α2
0) DHF (α2=1.05α2

0) q K=2q/ω

7s 0 0 0 0 0

7p1/2 9912 9757 10077 3195 0.645

7p3/2 11112 10876 11361 4850 0.873

6d3/2 14942 14660 15235 5758 0.771

6d5/2 14843 14571 15126 5555 0.748

The sensitivity to α-variation is 80 times larger than for a similar ns-np1/2 transition in Na!
This is why the most accurate laboratory study was conducted for Al+/Hg+ clocks: Al+ is not 

very sensitive to α-variation while heavy Hg+ has a very large enhancement. 

Here is an example of the systems (highly-charged ions) which are very sensitive to α-variation:
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