Lecture 6

Alkali-metal atoms. Alkaline-earth metal atoms & their singly-charged ions. The central-field approximation. Self - consistent solutions.

										0 2 He								
2	3 Li	4 Be		of Elements									9 F	10 Ne				
3	11 Na	12 Mg	ШВ	IIIB IVB VB VIB VIB — VII — IB IB AI SI P S CI								17 CI	18 Ar					
4	19 K	20 Ca	21 Sc	22 Ti	23 Y	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
6	55 Cs	56 Ba	57 *La	72 Hf	73 Ta	74 ₩	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	89 +Ac	104 Rf	105 Ha	106 106	107 107	108 1 0 8	109 1 0 9	110 110								
*L: Si	antha eries	anide	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu		
+ Actinide Series		e	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr		
Legend - click to find out more																		
H - gas Li - solid Br - liquid Tc -								synt	hetic									
Non-Metals					Transition Metals					I	Rare Earth Metals				Halogens			
Alkali Metals					Alkali Earth Metals						Other Metals				Inert Elements			

Which atoms are the best suited for precision experiments?

Considerations:	1) electronic structure						
	2) lifetimes of states: availability of metastable (long-lived) states						
	3) wavelengths of relevant transitions (convenience, available laser power, etc.)						
	4) special considerations that enhance the effect to be studied, for example, some effects are enhanced for heavy atoms (need large Z) or for accidentally close energy levels						
	5) nuclear properties (nuclear spin, availability of stable isotopes, availability of several isotopes), is the isotope bosonic or fermionic?						
	6) special considerations for quantum control - minimization of decoherence.						
	7) availability, material considerations, toxicity, radioactivity						

1. Very light atoms and corresponding ions (H, He).

2. Atoms with the simplest electronic structure - alkali-metal atoms, alkaline-earth metal atoms and their singly-charged ions, similar systems (Al+, Yb+, Yb, etc.)

Alkali-metal atoms

Atomic Structure (Lithium Atom - ⁷₃Li) Bosonic isotope - total integer spin

		Z	Configuration	Stable isotopes
Lithium	Li	3	1s² 2s	⁶ Li , ⁷ Li
Sodium	Na	11	1s ² 2s ² 2p ⁶ 3s	²³ Na
Potassium	K	19	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s	³⁹ K, ⁴⁰ K, ⁴¹ K
Rubidium	Rb	37	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4p ⁶ 5s	⁸⁵ Rb, ⁸⁷ Rb
Cesium	Cs	55	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4p ⁶ 4d ¹⁰ 5s ² 5p ⁶ 6s	¹³³ Cs
Francium	Fr	87	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4p ⁶ 4d ¹⁰ 4f ¹⁴ 5s ² 5p ⁶ 5d ¹⁰ 6s ² 6p ⁶ 7s	none

Ionization-Energy (energy to remove one electron)

http://commons.wikimedia.org/wiki/File:IonizationEnergyAtomicWeight.PNG

Simplified energy-level diagram for Li

Simplified energy-level diagram for Na

Fine and hyperfine structure for ⁶Li

Fine and hyperfine structure for K lsotope shifts

http://www.physics.ncsu.edu/jet/techdocs/pdf/PropertiesOfLi.pdf http://staff.science.uva.nl/~walraven/walraven/Publications_files/PotassiumProperties.pdf

Singly-charged ions of alkaline-earth metal atoms

Lowest p and d energy levels exchange places in comparison to alkali Result: first excited level becomes metastable (long-lived).

Alkaline-earth metal atoms: lowest excited level is also metastable.

Strontium energy level diagram

The central-field approximation

The Hamiltonian for N electrons in the Ze Coulomb potential is

$$H = \sum_{i=1}^{N} \left\{ -\frac{h^{2}}{2m} \nabla_{i}^{2} - \frac{2e^{2}}{4\pi\epsilon_{o}} \frac{1}{r_{i}} + \sum_{j>i}^{N} \frac{e^{2}}{4\pi\epsilon_{o}} \frac{1}{r_{ij}} \right\} \qquad r_{ij} = 1 \vec{r}_{i} - \vec{r}_{j}$$
Kinetic and potential
energy for each electron in
the Coulomb field
Electrostatic repulsion
between two electrons.
Sum is taken for j>i to
avoid double counting
$$T_{oo} \quad large \quad to \\ be \quad treated \quad as \quad a \\ perturb ation.$$

Large part of the repulsion between the electrons can be treated as a central potential S(r) since the closed sub-shells within the core have a spherical charge distribution. Therefore, the interaction between the different shells and the valence electron are also spherically symmetric. Then, the total potential energy depends only on the radial coordinate:

$$V_{cF}(r) = -\frac{Ze^{2}}{4\pi\epsilon_{o}} \frac{1}{r} + s(r)$$

The Hamiltonian is

$$H_{cF} = \sum_{i=1}^{N} \left\{ -\frac{\hbar^{2}}{2m} \nabla_{i}^{2} + V_{cF}(r_{i}) \right\}$$

When the potential is in this form, the N-electron Schrödinger equation

separates into N one-electron equations

$$\begin{cases} -\frac{k^2}{2m} \nabla_i^2 + V_{cr} (\Gamma_i) \end{cases} \Upsilon_i = E_i \Upsilon_i \quad i = 1...N \end{cases}$$

$$\Upsilon_{atom} = \Upsilon_1 \Upsilon_{2...} \Upsilon_N.$$

Note that proper antisymmetric wave function has the form of the Slater determinant.

The total energy of the system is
$$E_{atom} = E_{1} + E_{2} + ... E_{n}$$

 $\psi_{i} = R(r_{i})Y_{limi} \psi_{i}$
For $P(r) = rR(r)$ radial equation is
 $\begin{cases} -\frac{\hbar^{2}}{2m}\frac{d^{2}}{dr^{2}} + V_{CF}(r) + \frac{\hbar^{2}l(l+4)}{2mr^{2}} \end{cases} P(r) = EP(r)$
Small distances: central field $\vec{E}(\vec{r}) \rightarrow \frac{Ze}{\sqrt{\pi}\epsilon_{0}r^{2}} \hat{r}$
Zarge distances: most charge is screened by electrons
 $\vec{E}(\vec{r}) \rightarrow \frac{e}{\sqrt{\pi}\epsilon_{0}r^{2}} \hat{r}$

These two limits may be incorporated by the central potential field of the form

$$\vec{E}_{cF}(r) \rightarrow \frac{2eff}{4\pi\epsilon_{o}r^{2}} \vec{F} \qquad \forall cF = e \int_{cF} |E_{cF}(r')| dr'$$

For Na atom these potentials look as follows (from Atomic Physics, C. J. Foot, p. 66-67)

For more accurate description, one needs to account for effect of the outer electrons on the other electrons and, therefore, central field.

One generally measures this binding energy relative to the singly-charged $Na^{\scriptscriptstyle +}$ ion, which has energy

$$E(1s^{2}2s^{2}2p^{2}) = 2E_{1s}^{2} + 2E_{2s}^{2} + 6E_{2y}^{2} = E_{core}^{2}$$

The ionization energy (the energy to remove 3s electron) is

core polarization, i.e. change in the distribution of the charge in the core due to valence electron.

"Frozen-core" approximation: $\begin{bmatrix} c_{core} \sim \end{bmatrix}_{core}^{l}$

Self-consistent solutions

How do we determine the central-field potential V_{CF} ?

To get the potential we need to know the wave functions, but to get the wave functions we need to know the potential ... going in a circle ...

Procedure (devised by Hartree)

- (a) make initial guess for the potential
- (b) calculate the electron wave function in this potential
- (c) use resulting wave functions to calculate new central-field potential

(d) repeat until the changes in the wave functions and potential get smaller and converge to self-consistent solution, i.e. solving the radial Schrödinger equation for that central potential gives back the same wave functions within the numerical accuracy.