Angular momentum: summary

If
$$[L_x, L_y] = i\hbar L_z$$

 $[L_y, L_z] = i\hbar L_x$
 $[L_z, L_x] = i\hbar l_y$ then

Eigenfunctions \int_{ℓ}^{m} of L^{2} and L_{2} are labeled by m and l:

eigenvalue of L²

L²
$$f_e^m = h^2 e(l+1) f_e^m$$
, L₂ $f_e^m = hm f_e^m$.

1. 2... (only integer values for orbital angular momentum)

 $\ell=0$, 1, 2,... (only integer values for orbital angular momentum) For a given value of ℓ , there are $2\ell+1$ values of m: $m=-\ell$, $-\ell+1$,..., $\ell-1$, ℓ .

Generally, half-integer values are also allowed (but not for orbital angular moment).

Elementary particles carry intrinsic angular momentum $\bf S$ in addition to $\bf L$. Spin of elementary particles has nothing to do with rotation, does not depend on coordinates $\bf \Theta$ and $\bf \not O$, and is purely a quantum mechanical phenomena.

$$L_{2} = -i\hbar \frac{\partial}{\partial \phi}$$

$$L^{2} = -\hbar^{2} \left[\frac{1}{\sin \Theta} \frac{\partial}{\partial \Theta} \left(\sin \Theta \frac{\partial}{\partial \Theta} \right) + \frac{1}{\sin^{2}\Theta} \frac{\partial^{2}}{\partial \phi^{2}} \right].$$

Spin
$$\sqrt[4]{2}$$

 $S = \frac{1}{2}$, therefore $m = \pm \frac{1}{2}$ and there are two eigenstates $1 \text{Sm} 7 = 1 \pm \frac{1}{2} \pm \frac{1}{2} 7$,

$$|Sm7 = |\frac{1}{2}(-\frac{1}{2})7.$$
We will call them spin up $1 |\frac{1}{2} |\frac{1}{2}|$ and spin down $|\frac{1}{2}| |\frac{1}{2}| |\frac{1}{2}|$.

A I will omit().

Taking these eigenstates to be basis vectors, we can express any spin state of a particle with spin $\frac{1}{2}$ as:

All our spin operators are 2x2 matrixes for spin $\frac{1}{2}$, which we can find out from how they act on our basis set states γ_+ and γ_- .

Raising and lowering operators:

$$S_{\pm} = S_{\times} \pm i S_{\Upsilon}$$

$$S_{\pm} | sm \rangle = \hbar \sqrt{s(s+1) - m(m\pm 1)} | s(m\pm 1) \rangle$$

Class exercise

The electron in a hydrogen atom occupies the combined spin an position state:

$$\psi = R_{2} \left(\sqrt{1/3}, \frac{1}{1/3}, \frac{1}{1/3}$$

Note that $m_{\ell} + m_{s} = \frac{1}{2}$ in both cases

(a) If you measure the orbital angular momentum squared $\frac{1}{2}$, what values might your get and what is the probability of each?

$$l=1$$
 $L^{2} \Psi = \ell(\ell+1) t^{2} \Psi = 7$

You get $t^2\ell(\ell+1)=2t^2$ with probability P=1 (100%).

(b) Same for z component of the orbital angular momentum , $L_{\mathbf{z}}$.

Possible values of m_{ℓ} : $m_{\ell} = 0$ or 1.

$$P = \left(\sqrt{\frac{1}{3}}\right)^2 = \frac{1}{3} \quad \text{for} \quad m_{\ell} = 0$$

$$P = \left(\sqrt{\frac{2}{3}}\right)^2 = \frac{2}{3} \quad \text{for} \quad m_{\ell} = 1.$$

(c) Same for the spin angular momentum squared S^2 .

$$S^{2}Y = h^{2}s(s+i)Y$$
 $s=\frac{1}{2}=7$ You get $\frac{3}{4}h^{2}$ with $P=1$.

(d) Same for z component of the spin angular momentum $\mathbb{S}_{\mathbf{z}}$.

$$S_2 Y = t m_S Y$$
 $m_S = \frac{1}{2}$ and $-\frac{1}{2}$
 $P = \frac{1}{3}$ for $m_S = \frac{1}{2}$; $P = \frac{2}{3}$ for $m_S = -\frac{1}{2}$

Class exercise

Construct the spin matrix S_z for a particle of spin 1.

Hint: for a given value of s, there are 2s+1 values of m, so there are three eigenstates:

$$\gamma_{+} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
 $\gamma_{0} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$
 $\gamma_{-} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$

$$S=1 \quad m=0$$

$$S=1 \quad m=-1$$

For the operator Sz:

$$S_{\geq} \gamma_{+} = h \gamma_{+}$$
 $S_{\geq} \gamma_{-} = -h \gamma_{-}$ $S_{\geq} \gamma_{0} = 0$

$$\begin{pmatrix} a & b & c \\ d & e & f \\ g & k & e \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = t \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} a \\ d \\ g \end{pmatrix} = \begin{pmatrix} t \\ 0 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} a = t \\ d = 0 \\ g = 0 \end{pmatrix}$$

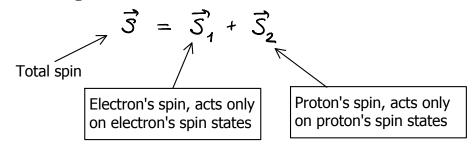
$$\begin{pmatrix} a & b & c \\ d & e & f \\ g & k & e \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = 0 \qquad \begin{pmatrix} b \\ e \\ k \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} b = 0 \\ e = 0 \\ k = 0 \end{pmatrix}$$

$$\begin{pmatrix} a & b & c \\ d & e & f \\ g & k & e \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = -t \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} c \\ f \\ e \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ -t \end{pmatrix} \qquad \begin{pmatrix} c = 0 \\ f = 0 \\ -t \end{pmatrix}$$

$$S_{2} = t \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Addition of angular momenta

Let's go back to ground state of hydrogen: it has one proton with spin $\sqrt{2}$ and one electron with spin $\sqrt{2}$ (orbital angular momentum is zero). What is the total angular momentum 3 of the hydrogen atom?



$$S_2 \times_1 \times_2 = (S_2^{(1)} + S_2^{(2)}) \times_1 \times_2 =$$
electron's proton's spin state

$$= (s_{2}^{(1)} \chi_{1}) \chi_{2} + \chi_{1} (s_{2}^{(2)} \chi_{2}) = t_{m_{1}} \chi_{1} \chi_{2} + t_{m_{2}} \chi_{1} \chi_{2}$$

$$= t_{m_{1}} + t_{m_{2}} \chi_{1} \chi_{2}$$

Therefore, the z components just add together and quantum number m for the composite system is simply

$$m = m_1 + m_2$$

There are four possible combinations:

$$m_1 = \frac{1}{2} \quad m_2 = \frac{1}{2} \quad \uparrow \uparrow \qquad m = 1$$
 $m_1 = \frac{1}{2} \quad m_2 = -\frac{1}{2} \quad \uparrow \downarrow \qquad m = 0$
 $m_1 = -\frac{1}{2} \quad m_2 = -\frac{1}{2} \quad \downarrow \uparrow \qquad m = 0$
 $m_1 = -\frac{1}{2} \quad m_2 = -\frac{1}{2} \quad \downarrow \downarrow \qquad m = -1$

(first arrow corresponds to the electron spin and second arrow corresponds to the nuclear spin) .

Well, it appears that we have an extra state!

Let's apply lowering operator to state ↑↑ to sort this out :

$$S_{-} | Sm7 = t \sqrt{S(S+1)} - m(m-1) | S m-1 \rangle$$

$$S_{-}^{(1)} | 1 = S_{-}^{(1)} | \frac{1}{2} \frac{1}{2} ? = t \sqrt{\frac{1}{2} \cdot \frac{3}{2} - \frac{1}{2} (\frac{1}{2} - 1)} | \frac{1}{2} - \frac{1}{2} ? = t \sqrt{\frac{1}{2} \cdot \frac{3}{2} - \frac{1}{2} (\frac{1}{2} - 1)} | \frac{1}{2} - \frac{1}{2} ? = t \sqrt{\frac{1}{2} \cdot \frac{3}{2} - \frac{1}{2} (\frac{1}{2} - 1)} | \frac{1}{2} - \frac{1}{2} ? = t \sqrt{\frac{1}{2} \cdot \frac{3}{2} - \frac{1}{2} (\frac{1}{2} - 1)} | \frac{1}{2} - \frac{1}{2} ? = t \sqrt{\frac{1}{2} \cdot \frac{3}{2} - \frac{1}{2} (\frac{1}{2} - 1)} | \frac{1}{2} - \frac{1}{2} ? = t \sqrt{\frac{1}{2} \cdot \frac{3}{2} - \frac{1}{2} (\frac{1}{2} - 1)} | \frac{1}{2} - \frac{1}{2} ? = t \sqrt{\frac{1}{2} \cdot \frac{3}{2} - \frac{1}{2} (\frac{1}{2} - 1)} | \frac{1}{2} - \frac{1}{2} ? = t \sqrt{\frac{1}{2} \cdot \frac{3}{2} - \frac{1}{2} (\frac{1}{2} - 1)} | \frac{1}{2} - \frac{1}{2} ? = t \sqrt{\frac{1}{2} \cdot \frac{3}{2} - \frac{1}{2} (\frac{1}{2} - 1)} | \frac{1}{2} - \frac{1}{2} ? = t \sqrt{\frac{1}{2} \cdot \frac{3}{2} - \frac{1}{2} (\frac{1}{2} - 1)} | \frac{1}{2} - \frac{1}{2} ? = t \sqrt{\frac{1}{2} \cdot \frac{3}{2} - \frac{1}{2} (\frac{1}{2} - 1)} | \frac{1}{2} - \frac{1}{2} ? = t \sqrt{\frac{1}{2} \cdot \frac{3}{2} - \frac{1}{2} (\frac{1}{2} - 1)} | \frac{1}{2} - \frac{1}{2} ? = t \sqrt{\frac{1}{2} \cdot \frac{3}{2} - \frac{1}{2} (\frac{1}{2} - 1)} | \frac{1}{2} - \frac{1}{2} ? = t \sqrt{\frac{1}{2} \cdot \frac{3}{2} - \frac{1}{2} (\frac{1}{2} - 1)} | \frac{1}{2} - \frac{1}{2} ? = t \sqrt{\frac{1}{2} \cdot \frac{3}{2} - \frac{1}{2} (\frac{1}{2} - 1)} | \frac{1}{2} - \frac{1}{2} ? = t \sqrt{\frac{1}{2} \cdot \frac{3}{2} - \frac{1}{2} (\frac{1}{2} - 1)} | \frac{1}{2} - \frac{1}{2} ? = t \sqrt{\frac{1}{2} \cdot \frac{3}{2} - \frac{1}{2} (\frac{1}{2} - 1)} | \frac{1}{2} - \frac{1}{2} ? = t \sqrt{\frac{1}{2} \cdot \frac{3}{2} - \frac{1}{2} (\frac{1}{2} - 1)} | \frac{1}{2} - \frac{1}{2} ? = t \sqrt{\frac{1}{2} \cdot \frac{3}{2} - \frac{1}{2} (\frac{1}{2} - 1)} | \frac{1}{2} - \frac{1}{2} ? = t \sqrt{\frac{1}{2} \cdot \frac{3}{2} - \frac{1}{2} (\frac{1}{2} - 1)} | \frac{1}{2} - \frac{1}{2} ? = t \sqrt{\frac{1}{2} \cdot \frac{3}{2} - \frac{1}{2} (\frac{1}{2} - 1)} | \frac{1}{2} - \frac{1}{2} ? = t \sqrt{\frac{1}{2} \cdot \frac{3}{2} - \frac{1}{2} (\frac{1}{2} - 1)} | \frac{1}{2} - \frac{1}{2} ? = t \sqrt{\frac{1}{2} \cdot \frac{3}{2} - \frac{1}{2} (\frac{1}{2} - 1)} | \frac{1}{2} | \frac{1}{2} ? = t \sqrt{\frac{1}{2} \cdot \frac{3}{2} - \frac{1}{2} (\frac{1}{2} - 1)} | \frac{1}{2} | \frac{1}{2} ? = t \sqrt{\frac{1}{2} \cdot \frac{3}{2} - \frac{1}{2} (\frac{1}{2} - 1)} | \frac{1}{2} | \frac{1}{2} ? = t \sqrt{\frac{1}{2} \cdot \frac{3}{2} - \frac{1}{2} (\frac{1}{2} - 1)} | \frac{1}{2} | \frac{1}{2} ? = t \sqrt{\frac{1}{2} \cdot \frac{3}{2} - \frac{1}{2} (\frac{1}{2} - 1)} | \frac{1}{2} | \frac{1}{2} | \frac{1}{2} | \frac{1}{2} | \frac{1}{2} |$$

$$S_{-}(\uparrow\uparrow) = (S_{-}^{(1)} + S_{-}^{(2)})\uparrow\uparrow$$

= $(S_{-}^{(1)}\uparrow)\uparrow + \uparrow (S_{-}^{(2)}\uparrow) = f_{\downarrow}\uparrow + f_{\downarrow}\uparrow = f_{\downarrow}(\downarrow\uparrow+\uparrow\downarrow)$
(Note: normalization is not preserved here).

So we can sort out four states as follows:

Three states (s m) with spin s = 1, m = 1, 0, -1:

$$\begin{cases} |11\rangle = \uparrow \uparrow \\ |10\rangle = \frac{1}{\sqrt{2}} (\uparrow \downarrow + \downarrow \uparrow) \end{cases}$$

$$\begin{cases} S=1 & \text{This is called a} \\ |11-1\rangle = \downarrow \downarrow \end{cases}$$
This is called a triplet configuration.

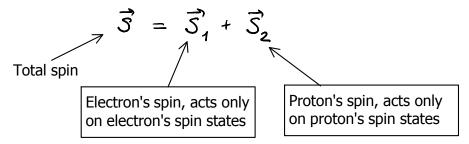
and one state with spin s = 0, m = 0:

$$\{1007 = \frac{1}{\sqrt{2}}(71 - 17)\}$$
 $S = 0$ This is called a singlet configuration.

Summary: Combination of two spin 1/2 particles can carry a total spin of s = 1 or s = 0, depending on whether they occupy the triplet or singlet configuration.

Addition of angular momenta

Ground state of hydrogen: it has one proton with spin 1_2 and one electron with spin 1_2 (orbital angular momentum is zero). What is the total angular momentum 1_2 of the hydrogen atom?



The z components just add together and quantum number m for the composite system is simply

$$m = m_1 + m_2.$$

In general, it you combine any angular momentum j_1 and j_2 you get every value of angular momentum from $|j_1-j_2|$ to j_1+j_2 in integer steps:

$$j = |j_1 - j_2|, \dots, (j_1 + j_2)$$

It does not matter if it is orbital angular momentum or spin.

Example:

$$j_1 = \frac{3}{2}$$
 $j_2 = 3$ = j_3

$$|j_1 - j_2| = |\frac{3}{2} - 3| = \frac{3}{2}$$

$$|j_1 + j_2| = \frac{3}{2} + 3 = \frac{9}{2}$$

Total angular momentum j can be $\frac{3}{2}$, $\frac{5}{2}$, $\frac{3}{2}$, and $\frac{9}{2}$.

Problem

Quarks carry spin $\frac{1}{2}$. Two quarks (or actually a quark and an antiquark) bind together to make a meson (such as pion or kaon). Three quarks bind together to make a barion (such as proton or neutron). Assume all quarks are in the ground state so the orbital angular momentum is zero).

- (1) What spins are possible for mesons?
- (2) What spins are possible for baryons?

Solution:

(1)
$$S_1 = \frac{1}{2}$$
 $S_2 = \frac{1}{2}$ \Rightarrow $S = 0 \text{ or } 1.$

(2)
$$S_1 = \frac{1}{2}$$
 $S_2 = \frac{1}{2}$ $S_3 = \frac{1}{2}$

Add these first
$$S_{12} = 0 \text{ or } 1$$

Now add the third spin: $S_{12} = 0$ $S_3 = \frac{1}{2}$ = $S = \frac{1}{2}$

$$S_{12} = 1$$
 $S_3 = \frac{1}{2} \Rightarrow S = |\frac{1}{2} - 1|, (\frac{1}{2} + 1) \Rightarrow S = \frac{1}{2} \text{ or } \frac{3}{2}$

$$S = \frac{1}{2} \text{ or } \frac{3}{2}$$