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The Fermi-Dirac distribution
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Time-independent perturbation theory

Nondegenerate perturbation theory

General formalism of the problem:

Suppose that we solved the time-independent  Schrödinger equation for some potential
and obtained a complete set of orthonormal  eigenfunctions          and corresponding
eigenvalues        .

This is the problem that we completely
understand and know solutions for.

We mark all these solutions and the Hamiltonian with "   " label.   

Now we slightly perturb the potential. For example, we raise a little bit the bottom
of the infinite square well or put a little bump there:

The problem of the perturbation theory is to find eigenvalues and eigenfunctions of the
perturbed  potential, i.e. to solve approximately the following equation:

using the known solutions of the problem

For now, we consider nondegenerate case, i.e. each eigenvalue corresponds to different
eigenfunction.
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We expand our solution as follows in terms of perturbation H'

We plug our expansions into
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We now separate this equation into a system of equations that are zeroth, first, second,
and so on orders in perturbation potential H':

L9.P4

Separating the equations for zeroth, first, and second orders we get:

Zeroth order

First order

Second order

If we consider more terms in the expansions for      and     we can write equations for  third,
fourth, and higher orders of perturbation theory.
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First-order perturbation theory

We are going to multiply this equation by          and integrate:

Therefore, the first-order energy is given by:
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Problem #1

Find the first-order correction to the energies for  the potential

The solutions for the infinite square well are:

Solution:

Corrected energy levels are

Problem #2

The same for the potential
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First-order correction to the  wave function

can be expanded as a linear combination  of functions          since they

constitute a complete set.

Our mission now is to find coefficients            . To do so, we plug our expansion (2) into the first-
order equation (1).

  

We multiply this equation from the left side by          and integrate. I will not explicitly
write integrals  here, but use inner product notations right away. It is, of course, the same.
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First-order correction to the wave function is given by

Note that as long as m ≠n, the denominator can not  be zero  as long as energy levels are
nondegenerate. If the energy levels are degenerate, we need degenerate perturbation theory
( consider later).
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Second-order correction to the energy

Again, we multiply the whole equation from the left  by           and integrate.

The second-order correction to the energy is
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