Lecture 8

Quantum statistical mechanics

At absolute zero temperature, a physical system occupies the lowest possible energy configuration.
When the temperature increases, excited states become populated. The question that we would like to find an answer to is the following:

If we have a large number of particles \mathbf{N} in thermal equilibrium at temperature T, what is the probability that randomly selected particle has specific energy E_{i} ?

The general case

In the general case, we have an arbitrary potential. The one particle energies in this potential are $E_{1}, E_{2}, E_{3}, \ldots$ with degenerates $d_{1}, d_{2}, d_{3}, \ldots$. This means that there are d_{n} different states all with energy E_{n}.

We put N particles with the same mass m in this potential and consider configuration

Question: in how many ways $\mathbf{Q}\left(\mathbf{N}_{1}, \mathbf{N}_{2}, \mathbf{N}_{3}, \ldots\right)$ can we build such a configuration, ie. how many distinct states correspond to this configuration?

Case 1: Distinguishable particles

Building $\left(N_{1}, N_{2}, N_{3}, \ldots\right)$ from N particles.

$$
\text { first, we find how to pica } N_{1} \text { particles from } N_{1}
$$

Our result from lecture 7:

$$
\frac{1}{N_{1}!} \frac{N!}{\left(N-N_{1}\right)!}
$$

So far, we did not account for degeneracy d_{1}.

We now remember that each particle has d_{1} choices of states to have energy E_{1} (degeneracy of E_{1} energy state is d_{1}). Let's consider example $d_{1}=2$ and $N_{1}=3$.
ψ_{1}, ψ_{2}

ψ_{1}	ψ_{1}	ψ_{1}	ψ_{2}	ψ_{1}
ψ_{1}				
ψ_{1}	ψ_{1}	ψ_{2}	ψ_{2}	ψ_{1}
ψ_{2}				
ψ_{1}	ψ_{2}	ψ_{1}	ψ_{2}	ψ_{2}
ψ_{1}				
ψ_{1}	ψ_{2}	ψ_{2}	ψ_{2}	ψ_{2}
ψ_{2}				

Each of the particles $1,2,3$ has choice of ψ_{1} or ψ_{2} so number of combinations is $2 \times 2 \times 2=2^{3}$. In the general case, there are $d_{1}^{N_{1}}$ choices.

Putting it all together, we get that there are

$$
\frac{N!d_{1}^{N_{1}}}{N_{1}!\left(N-N_{1}\right)!}
$$

ways to pick N_{1} particles from N particles when each of these N_{1} particles can be in d_{1} different states.

Next step is to pick N_{2} particles from remaining ($\mathrm{N}-\mathrm{N}_{1}$) particles. The result is the same, only now

$$
\left.\begin{array}{l}
N \rightarrow N-N_{1} \\
N_{1} \rightarrow N_{2} \\
d_{1} \rightarrow d_{2}
\end{array}\right\} \quad \frac{N!d_{1}^{N_{1}}}{N_{1}!\left(N-N_{1}\right)!} \rightarrow \begin{aligned}
& \left(N-N_{1}\right)!d_{2}^{N_{2}} \\
& N_{2}!\left(N-N_{1}-N_{2}\right)! \\
& \hline
\end{aligned}
$$

Next we pick N_{3} particles from remaining $\mathrm{N}-\mathrm{N}_{1}-\mathrm{N}_{2}$ particles, and so on. The total result is:

$$
\begin{aligned}
& Q\left(N_{1}, N_{2}, N_{3}, \ldots\right)=\frac{N!d_{1}^{N_{1}}}{N_{1}!\left(N-N_{1}\right)!} \times \frac{\left(N-N_{1}\right)!d_{2}^{N_{2}}}{N_{2}!\left(N-N_{1}-N_{2}\right)!} \\
& \times \frac{\left(N-N 1-N_{2}\right)!d_{3}^{N_{3}} \times N!\prod_{n=1}^{\infty} \frac{d_{n}^{N_{n}}}{N_{n}!}}{N_{3}!\left(N-N_{1}-N_{2}-N_{3}\right)!}
\end{aligned}
$$

Let's check this result for our example from Lecture 7:

Example: three particles

Three noninteracting particle of mass m in the one-dimensional infinite square well.
Our particles are in states A, B, and C, and; therefore, their total energy is

$$
\begin{aligned}
& E=E_{A}+E_{B}+E_{C}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(n_{A}^{2}+n_{B}^{2}+n_{C}^{2}\right) . \\
& \uparrow{ }_{\text {positive integers }} \uparrow
\end{aligned}
$$

We picked a state with total energy $E=363 \frac{\pi^{2} \hbar^{2}}{2 m a^{2}}$;

$$
n_{A}^{2}+n_{B}^{2}+n_{C}^{2}=363
$$

In the case of distinguishable particles, there are 13 possible states with this total energy:

$$
\begin{array}{cc}
\left(n_{A}, n_{B}, n_{c}\right)=(11,11,11) & \# 1 \\
(13,13,5),(13,5,13),(5,13,13) & \# 2 \\
(1,1,19),(1,19,1),(19,1,1) & \# 3 \\
(5,7,17),(5,17,7),(7,5,17),(7,17,5),(17,5,7),(17,7,5) . & \# 4
\end{array}
$$

which belong to four different configurations

$$
\left(N_{1}, N_{2}, N_{3}, N_{4}, N_{5}, N_{6}, N_{7}, N_{8}, N_{9}, N_{10}, N_{11}, N_{12}, N_{13}, N_{14}, N_{15}, N_{16}, N_{17}, N_{18}, N_{15}, \ldots\right)
$$

$\# 1(0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0$,
$\# 2(0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0, \ldots)$
\#3 $(2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1, \ldots)$
$\# 4(0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,0, \ldots)$

We should get: $Q_{1}=1, Q_{2}=3, Q_{3}=3, Q_{4}=6$.

Our general result is $Q\left(N_{1}, N_{2}, N_{3}, \ldots\right)=N!\prod_{n=1}^{\infty} \frac{d_{n}^{N_{n}}}{N_{n}!}$
In our example, $N=3$ and $d_{n}=1$ for all states (i.e. all states are non-degenerate) \Rightarrow

$$
Q\left(N_{1}, N_{2}, \ldots\right)=6 \prod_{n=1}^{\infty} \frac{1}{N_{n}!}
$$

Configuration 1: $\mathrm{N}_{11}=3$, all other $\mathrm{N}_{\mathrm{i}}=0$ (remember that $0!=1$)

$$
Q_{1}=6 \frac{1}{N_{11}!}=6 \frac{1}{3!}=1
$$

Configuration 2: $\mathrm{N}_{5}=1, \mathrm{~N}_{13}=2$, all other $\mathrm{N}_{\mathrm{i}}=0$

$$
Q_{2}=6\left\{\frac{1}{N_{5}!} \times \frac{1}{N_{13}!}\right\}=6 \cdot 1 \cdot \frac{1}{2}=3
$$

Configuration 3: $N_{1}=2, N_{19}=1$, all other $N_{i}=0 \quad Q_{3}=3$
Configuration 4: $N_{5}=1, N_{7}=1, N_{17}=1$, all other $N_{i}=0$

$$
Q_{4}=6\left\{\frac{1}{N_{5}!} \cdot \frac{1}{N_{7}!} \cdot \frac{1}{N_{17}!}\right\}=6 \quad \text { ON }
$$

Case 2: identical fermions

(1) Our fermions are indistinguishable so it does not matter which particle is in which state.
(2) There is only one N-particle state with specific set of one-particle states.
(3) Only one particle can occupy any given state.

Therefore the counting works in the following way (let's pick our N_{1} particles again):
We can now only pick particles to put in N_{1} "bin" out of d_{1} choices since there can be at most d_{1} particles with energy E_{1}. See the following example:
$d_{1}=3$ so ψ_{1}, ψ_{2}, and ψ_{2} all have energy E_{1}.
$N_{1}=1 \Rightarrow$ We have 3 choices: ψ_{1}, ψ_{2}, or ψ_{3}
$N_{1}=2 \Rightarrow$ We have 3 choices: $\psi_{1} \psi_{2}, \psi_{2} \psi_{3}$, and $\psi_{1} \psi_{3}$.
$N_{1}=3 \Rightarrow$ We have 1 choice: $\psi_{1} \psi_{2} \psi_{3}$.
$N_{1}=4 \Rightarrow$ No combination can be build.

The result is the same as
"how to pick N_{1} particle from N particles" only now it is
"how to pick N_{1} particles out of d_{1} states".

$$
\text { Answer }: \frac{N!}{N_{1}!\left(N-N_{1}\right)!} \longrightarrow \frac{d_{1}!}{N_{1}!\left(d_{1}-N_{1}\right)!}
$$

Let's check for the cases in our example:

$$
\begin{aligned}
& N_{1}=1 \quad d_{1}=3 \Rightarrow \frac{3!}{1!(3-1)!}=3 \\
& N_{1}=2 \quad d_{1}=3 \Rightarrow \frac{3!}{2!(3-2)!}=3 \\
& N_{3}=3 \quad d_{1}=3 \Rightarrow \frac{3!}{3!(3-3)!}=1 \\
& d_{1}<N_{1} \Rightarrow 0
\end{aligned}
$$

The total answer for the case of identical fermions is:

$$
Q\left(N_{1}, N_{2}, \ldots\right)=\prod_{i=1}^{\infty} \frac{d_{n}!}{N_{n}!\left(d_{n}-N_{n}\right)!}
$$

Case 3: identical bosons

(1) Our bosons are indistinguishable so it does not matter which particle is in which state.
(2) There is only one N -particle state with specific set of one-particle states.
(3) No restrictions on how many particles can occupy the same one-particle state.

So, we can still only pick N_{1} particles from d_{1} states, but more combinations are allowed. Let's do the same example again $\left(d_{1}=3\right)$:
$N_{1}=1 \quad 3$ choices: ψ_{1}, ψ_{2}, and ψ_{3}.
$\left.\begin{array}{ll}N_{1}=2 & \psi_{1} \psi_{1}, \\ \psi_{1} \psi_{2}, & \psi_{2} \psi_{2}, \\ \psi_{1} & \psi_{3}, \psi_{3} \\ \psi_{2} & \psi_{3}\end{array}\right\} 6$ choices

$N_{1}=3$ Question for the class: how many choices?

$\psi_{1} \psi_{1} \psi_{1}$	$\psi_{1} \psi_{1} \psi_{2}$	$\psi_{1} \psi_{2} \psi_{3}$
$\psi_{2} \psi_{2} \psi_{2}$	$\psi_{1} \psi_{1} \psi_{3}$	(all three are different)
$\psi_{3} \psi_{3} \psi_{3}$	$\psi_{2} \psi_{2} \psi_{1}$	
(all 3 same)	$\psi_{2} \psi_{2} \psi_{3}$	
	$\psi_{3} \psi_{3} \psi_{1}$	
	$\psi_{3} \psi_{3} \psi_{2}$	
	(two the same)	

Total: 10

Question for the class: is $\mathbf{N}_{\mathbf{1}}=\mathbf{4}$ allowed in this case?

Yes, pick states in the same way: all the same, three the same, two the same, all different.

Let's label our choices like this: $\quad\left(N_{1}=3, d_{1}=3\right)$

$$
\underbrace{\psi_{1} \psi_{1} \psi_{2}}_{\text {two in one }} \times \underbrace{0}_{\Gamma_{\text {one in two }}^{0}} \text { none in three }
$$

$$
\begin{gathered}
\psi_{1} \psi_{2} \psi_{3} \\
0 x \quad x \\
\text { (one in each) }
\end{gathered}
$$

A bit more complicated example: $\mathrm{N}_{1}=7$ and $\mathrm{d}_{1}=5$:

- $\quad \times \quad x \cdot 0 \cdot x \cdot x$

Question for the class: what state is it? (like $\psi_{i} \psi_{j} \psi_{k} \ldots$)

$$
\underbrace{\psi_{1} \psi_{1} \psi_{2} \psi_{3} \psi_{3} \psi_{3} \psi_{4}}_{7 \text { total }}
$$

Now we can write a solution:
(1) There are N_{1} dots and ($d_{1}-1$) crosses. What we need to know is how many different arrangements of those we can do.

If they all "differently labeled things", like

We can arrange N things in N ! ways, so the answer is $\left(N_{1}+d_{1}-1\right)$!
However, all dots are the same, so there are N_{1} ! equivalent ways to permute them that do not change the state. Also, all crosses are equivalent, and permuting them ($\left.\mathrm{d}_{1}-1\right)$! ways does not change the state either. Therefore, the answer is:

$$
\frac{\left(N_{1}+d_{1}-1\right)!}{N_{1}!\left(d_{1}-1\right)!}
$$

and the total answer for identical bosons is:

$$
Q\left(N_{1}, N_{2}, \ldots\right)=\prod_{i=1}^{\infty} \frac{\left(N_{n}+d_{n}-1\right)!}{N_{n}!\left(d_{n}-1\right)!}
$$

The most probable configuration
In thermal equilibrium, every state with energy E and number of particles N is equally likely. Therefore, the most probable configuration $\left(N_{1}, N_{2}, N_{3}, \ldots\right)$ is the one for which $\mathrm{Q}\left(\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{~N}_{3}, \ldots\right)$ is the largest, since it can be produced in the largest number of different ways.

Therefore, to find the most probable configuration, we need to find when Q is a maximum, assuming the following constrains:

$$
\begin{aligned}
& \sum_{n=1}^{\infty} N_{n}=N \\
& \sum_{n=1}^{\infty} N_{n} E_{n}=E
\end{aligned}
$$

To maximize function $F\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ that is subject to constraints $f_{1}\left(x_{1}, x_{2}, x_{3}, \ldots\right)=0$, $f_{2}\left(x_{1}, x_{2}, x_{3}, \ldots\right)=0$, etc., it is convenient to use the method of Lagrange multipliers. We introduce new function

$$
G\left(x_{1}, x_{2}, x_{3}, \ldots\right) \equiv F+\lambda_{1} f_{1}+\lambda_{2} f_{2}+\ldots
$$

and set all derivatives to zero:

$$
\frac{\partial G}{\partial x_{n}}=0 ; \quad \frac{\partial G}{\partial \lambda_{n}}=0
$$

We will work with $\ln (\mathrm{Q})$ to turn products into sums. The maxima of Q and $\ln (\mathrm{Q})$ occur at the same point since $\ln (Q)$ is a monotonous function.

$$
\begin{aligned}
& G \equiv \ln (Q)+\underbrace{\alpha}_{\lambda_{1}}[\begin{array}{l}
\left.f_{1}-\sum_{n=1}^{\infty} N_{n}\right]
\end{array} \underbrace{\beta}_{\lambda_{2}} \underbrace{\beta}_{f_{2}}\left[E-\sum_{n=1}^{\infty} N_{n} E_{n}\right] \\
& x_{n} \equiv N_{n}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial G}{\partial \alpha} \text { and } \frac{\partial G}{\partial \beta} \text { give back the } \\
& \text { need to get } \frac{\partial G}{\partial N_{n}}=0
\end{aligned}
$$

Case 1: distinguishable particles

$$
\begin{aligned}
& Q=N!\prod_{n=1}^{\infty} \frac{d_{n}^{N_{n}}}{N_{n}!} \\
& G=\ln \left(N!\prod_{n=1}^{\infty} \frac{d_{n}^{N_{n}}}{N_{n}!}\right)+\alpha\left[N-\sum_{n=1}^{\infty} N_{n}\right]+\beta\left[E-\sum_{n=1}^{\infty} N_{n} E_{n}\right] \\
& =\ln (N!)+\sum_{n=1}^{\infty}\left\{N_{n} \ln \left(d_{n}\right)-\ln \left(N_{n}!\right)\right\} \\
& \\
& \quad+\alpha\left[N-\sum_{n=1}^{\infty} N_{n}\right]+\beta\left[E-\sum_{n=1}^{\infty} N_{n} E_{n}\right]
\end{aligned}
$$

We use Stirling's approximation for large occupation numbers N_{n} :

$$
\begin{gathered}
\ln (z!) \approx z \ln z-z] \text { for } z \gg 1 \\
G=\ln (N!)+\sum_{n=1}^{\infty}\left\{N_{n} \ln \left(d_{n}\right)-N_{n} \ln \left(N_{n}\right)+N_{n}\right. \\
\left.-\alpha N_{n} N_{n}\right\}+\alpha N-\beta E \\
\frac{\partial G}{\partial N_{n}}=\ln \left(d_{n}\right)-\ln \left(N_{n}\right)-1+\neq \alpha+\beta E_{n} \\
\ln \left(d_{n}\right)-\ln \left(N_{n}\right)-\alpha-\beta E_{n}=0 \\
\ln \left(N_{n}\right)=\ln \left(d_{n}\right)-\left(\alpha+\beta E_{n}\right) \\
N_{n}=d_{n} e^{-\left(\alpha+\beta E_{n}\right)}
\end{gathered}
$$

Case 2: identical fermions ($N_{n} \gg 1$)
Doing similar calculation and also assuming $d_{n} \gg N_{n}$ we get:

Lecture 8 Page 10

Case 3: identical bosons $\quad N_{n} \gg 1$

$$
N_{n}=\frac{d_{n}-1}{e^{\left(\alpha+\beta E_{n}\right)}-1}
$$

We replace $d_{n}-1$ in the numerator by d_{n} assuming as in the case of fermions that $d_{n} \gg 1$.
Physical significance of α and β :
β is related to temperature: $\quad \beta=\frac{1}{k_{B} T}$
α is generally replaced by a chemical potential $\mu(\mathbf{T})$:

$$
\mu(T) \equiv-\alpha k_{B} T
$$

Now, we can finally write the formulas for the most probable number of particles \mathbf{n} in a particular (one-particle) state with energy ε.

Distinguishable particles:

$$
\begin{aligned}
& n(\varepsilon)=\frac{N_{n}}{d w}=e^{-(\alpha+\beta \varepsilon)}=e^{-\left(\frac{\mu}{k_{B} T}+\frac{\varepsilon}{k_{B} T}\right)} \\
& n(\varepsilon)=e^{-(\varepsilon-\mu) / k_{B} T} \longleftarrow \begin{array}{l}
\text { Maxwell-Boltzmann } \\
\text { distribution (classical result) }
\end{array}
\end{aligned}
$$

Identical fermions:

$$
n(\varepsilon)=\frac{1}{e^{(\varepsilon-\mu) / k_{B} T}+1} \leftarrow \begin{aligned}
& \text { Fermi-Dirac } \\
& \text { distribution }
\end{aligned}
$$

Identical bosons:

$$
n(\varepsilon)=\frac{1}{e^{(\varepsilon-\mu) / k_{B} T}-1} \longleftarrow \begin{aligned}
& \text { Bose-Einstein } \\
& \text { distribution }
\end{aligned}
$$

