
Lecture 8

Quantum statistical mechanics

At absolute zero temperature, a physical system occupies the lowest possible energy   configuration.
When the temperature increases, excited states become populated. The question that we would like to
find an answer to is the following:

If we have a large number of particles N in thermal equilibrium at temperature T,  what is
the probability that randomly selected particle has specific energy Ei?

L8.P1

The general case

In the general case, we have an arbitrary  potential. The one particle energies in this   potential are
E1, E2, E3, ... with degenerates  d1, d2, d3, .... This means that there are dn different states all with
energy En.

We put N particles with the same mass m in this potential and consider configuration

Question: in how many ways Q(N1,N2,N3, …) can we build  such a configuration, i.e.
how many distinct  states correspond to this configuration?

Case 1: Distinguishable particles

Building                                     from N particles.

Our result from lecture 7:

So far, we did not account for degeneracy d1.
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We now remember that each particle has d1 choices of states to have energy E1

(degeneracy of E1 energy state is d1). Let's consider example d1=2 and N1 =3.

Each of the particles 1, 2, 3 has choice of        or      so  number of combinations is 2×2×2=23. In
the general case, there are          choices.

Putting it all together, we get that there are

ways to pick N1 particles from N particles when each of these N1 particles can be in d1 different 
states.

Next step is to pick N2 particles from remaining (N-N1) particles. The result is the same, only
now

Next we pick N3 particles from remaining N-N1-N2  particles, and so on. The total result is:
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Let's check this result for our example from Lecture 7:

Example: three particles

Three noninteracting particle of mass m in the one-dimensional infinite square well.

                                                                positive integers

Our particles are in states A, B, and C, and; therefore, their total energy is

In the case of distinguishable particles, there are 13 possible states with this total energy:

We picked a  state with total energy

which belong to four different configurations

We should get:

   Lecture 8 Page 3    



L8.P4

Our general result is

In our example, N=3 and dn = 1 for all states (i.e. all states are non-degenerate)

Configuration 1: N11=3, all other Ni=0 (remember that 0!=1)

Configuration 2: N5=1, N13=2, all other Ni=0

Configuration 3: N1=2, N19=1, all other Ni=0

Configuration 4: N5=1, N7=1, N17=1, all other Ni=0

   Lecture 8 Page 4    



L8.P5

Case 2: identical fermions

(1) Our fermions are indistinguishable so it does  not matter which particle is in which state.
(2) There is only one N-particle state with specific set of one-particle states.
(3) Only one particle can occupy any given state.  

Therefore the counting works in the following way (let's pick our N1 particles again):

We can now only pick particles to put in N1 "bin" out of d1 choices since there can be at most
d1 particles with energy E1. See the following example:

We have 3 choices:

We have 3 choices:

We have 1 choice:

No combination can be build.

The result is the same as
"how to pick N1 particle  from N particles" only now it is
"how to pick  N1 particles out of d1 states".

Answer

Let's check for the cases in our example:

The total answer for the case of identical fermions is:
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Case 3: identical bosons

(1) Our bosons are indistinguishable so it does not matter which particle is in which state.
(2) There is only one N-particle state with specific set of one-particle states.
(3) No restrictions on how many particles can occupy the same one-particle state.

So, we can still only pick N1 particles from d1 states, but more combinations are allowed.
Let's do the same example again (d1 = 3):

N1=3 Question for the class: how many choices?

Total: 10

Question for the class: is N1=4 allowed in this case?

Yes, pick states in the same way: all the same, three the same, two the same, all different.

Let's label our choices like this:

Note: it is like placing N1 balls into d1 baskets.
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A bit more complicated example: N1=7 and d1=5:

Question for the class: what state is it?

Now we can write a solution:
(1) There are N1 dots and (d1-1) crosses.  What we need to know is how many
different arrangements of those we can do.

If they all "differently labeled things",  like

We can arrange N things in N! ways, so the answer is (N1+d1-1)!

However, all dots are the same, so there are  N1! equivalent ways to permute them that  
do not change the state. Also, all crosses are equivalent, and permuting them (d1-1)!
ways  does not change the state either. Therefore,  the answer is:

and the total answer for identical bosons is:
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The most probable configuration

In thermal equilibrium, every state with energy E and number of particles N is equally
likely. Therefore, the most probable  configuration (N1, N2, N3, ...) is the one for which
Q(N1, N2, N3, ...) is the largest, since it can be produced in the largest number of different
ways.

Therefore, to find the most probable configuration,  we need to find when Q is a maximum,
assuming  the following constrains:

To maximize function F (x1,x2, x3, ...) that is subject to constraints f1(x1,x2, x3, ...) = 0,
f2(x1,x2, x3, ...) = 0, etc., it is convenient to use the method of Lagrange multipliers.
We introduce new function

and set all derivatives to zero:

We will work with ln(Q) to turn products into sums. The maxima of Q and ln(Q) occur at the  
same point since ln(Q) is a monotonous function.
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Case 1: distinguishable particles

We use Stirling's approximation for large occupation numbers Nn:

Case 2: identical fermions

Doing similar calculation and also assuming                  we get:
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Case 3: identical bosons

Physical significance of αααα and ββββ:

β β β β is related to temperature:

αααα is generally replaced by a chemical potential µµµµ(T):

Now, we can finally write the formulas for the most probable number of particles n in a

particular (one-particle) state with energy εεεε.

Distinguishable particles:

We replace dn-1 in the numerator by dn assuming as in the case of fermions that

Identical fermions:

Identical bosons:
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