
Lecture 7

Quantum statistical mechanics

At absolute zero temperature, a physical system occupies the lowest possible energy   configuration.
When the temperature increases, excited states become populated. The question that we would like to
find an answer to is the following:

If we have a large number of particles N in thermal equilibrium at temperature T,  what is
the probability that randomly selected particle has specific energy Ei?

We will use the fundamental assumption of  statistical mechanics: in thermal  equilibrium 

every distinct state with the same total energy E is equally probable. It means that continuous 
redistribution of energy does not favor any particular  state. Since counting of states obviously depends
on the type of particles that we are counting  (distinguishable, identical bosons, or identical fermions),

these three cases will have to be considered separately.

Example: three particles

To clarity what we are trying to do, we start with the following example: just three

noninteracting particle of mass m in the one-dimensional infinite square well.

                                                                positive integers

For our example, we are going to pick a  state with total energy

Our particles are in states A, B, and C, and; therefore, their total energy is

There are only 4 possible ways we can combine 3 positive integers so their squares sum to 363:
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Therefore, there are 13 possible combinations  of three particles that will have such
total  energy:

If particles are distinguishable, each of these 13 combinations represents a different state
and in thermal equilibrium they are all equally  likely.

However, to develop method to answer our question in a general case, we introduce another
way to label states since we don't really care for our purposes which particle is in which state,  
only what is the total number of particles in each state.

We call this number occupation number Nn for the state       . For example, occupation number
for state         in (11,11,11) combination is N11=3 and occupation number for each other state
except       (N1, N2, N3, ... ) is zero. The collection of all occupation numbers for a three-particle
state is called a configuration. Here are the configurations for two combinations above:

One particle is in state       , two particles are in state      , all other states are unoccupied.

Exercise for class: write configurations for our two remaining cases below
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Since we only care now how many particles are in which state, we only have four
possible configurations: we label them 1, 2, 3, 4 in the order that they appear.
For distinguishable particles, there is one way to build configuration 1, three ways to
build  configurations 2 and 3, and 6 ways to build  configuration 4. Therefore,
configuration 4 is the most probable one in this example for distinguishable
particles.

We are now ready to answer our original question: if we randomly select one of
these particles and measure its energy, what is the probability Pn of getting
specific energy En?

Firstly, we consider the case of distinguishable particles.

1. What is the probability of getting energy E1?

The only configuration that contains particle in state         is configuration #3.

The chance of  getting configuration #3 is

If you got configuration #3, the chance of getting particle in state         is        since only
two out three particle will be in that state.

Therefore, the probably of getting energy E1 as a result of randomly measuring energy of
one of the particles is

Questions for the class: what are the probabilities of getting energies E2, E5, E7,
E11, E13, E17, and E19?

3.     appears in configurations 2 and 4. Probability of getting configurations 2 and 4 are          and
             respectively. Probability of getting E5 in configurations 2 and 4 are         and           ,
respectively. Total probability is given by the sum:

2. P2 = 0 since state        does not appear in any configuration.  By the postulate of quantum
mechanical measurement,  we can only get energies E1, E5, E7, E11, E13, E17, and E19 in our example.
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All probabilities, of course, sum to one:

Next, let us consider the case of identical fermions.  For simplicity we ignore spin, i.e.
assume they  are all in the same spin state.

      

Configurations 1, 2, and 3 are now simply not  allowed since we can't have two or three  
fermions in the same state. There is only one state in configuration 4.  Therefore,

and all other probabilities are zero. Again, all probabilities sum to one.
Finally, we consider identical bosons.

Symmetrization requirement allows one state in each configuration.

Question for the class: calculate all non-zero probabilities for identical bosons and
check that they sum to one.

Summary: result obviously depends on which kind of particles we have!

As number of particles grows, the most probable configuration becomes overwhelmingly more likely
than others. As a result, for statistical purposes, we can just ignore other configurations. The
distribution of individual particle energies, at equilibrium, is simply their distribution in the most

probable configuration. We will now develop more general counting procedure.

   Lecture 7 Page 4    



L7.P5

The general case

In the general case, we have an arbitrary  potential. The one particle energies in this   potential are
E1, E2, E3, ... with degenerates  d1, d2, d3, .... This means that there are dn   different states all with
energy En. (Remember  hydrogen states will n=2,l=0, m=0; n=2, l=1, m=-1, 0, 1. All these four
states have the same energy E2=-13.6/22=-3.4 eV,  so without counting spin, d2=4 for E2 in this
example).

We put N particles with the same mass m in this potential and consider configuration

Question: in how many ways Q(N1,N2,N3, …) can we build  such a configuration, i.e.
how many distinct  states correspond to this configuration?

Example: in our previous example, configuration # 4  in the case of distinguishable particles could
be  build in 6 different ways:

Why do we want to find the answer to such a  question? Because it will tell us which configuration  
is the most probable one.

Obviously, we need to consider three cases (distinguishable particles, identical fermions, and identical
bosons) separately since we demonstrated that we count states differently in these cases.

Case 1: Distinguishable particles

Building                                     from N particles.

Example: in how many ways can you pick 2 particles  from 5?

1. Pick first particle: N=5 choices:

2. Pick second particle: 4 choices (N-1) in each  case

In general case:
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However, we don't care in which order the particles were picked so in the list

the pairs each represent only one state,

so we need to divide by

To convince yourself that it is true in general case, consider N1=3:
The same configurations can be build in N1! ways:

To say the same thing, we can permute N1 numbers in N1! different ways.
Therefore, we need to divide our result above by N1!  to exclude identical cases:

We can check that it is correct by writing

We now remember that each particle has d1 choices of states to have energy E1

(degeneracy of E1 energy state is d1). Let's consider example d1=2 and N1 =3.

have to occupy 3 spaces:

Each particles 1, 2, 3 has choice of        or      so  number of combinations is 2×2×2=23. In
the general case, there are          choices.
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Putting it all together, we get that there are

ways to pick N1 particles from N particles when each of these N1 particles can be in d1 different 
states.

Next step is to pick N2 particles from remaining (N-N1) particles. The result is the same, only
now

Next we pick N3 particles from remaining N-N1-N2  particles, and so on. The total result is:
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