
Lecture 3

Two-particle systems

State of the two-particle system is described by  the wave function

The Hamiltonian for the two-particle system is

Of course, as usual, the time evolution of  the system is described by the Schrödinger  
equation:

The probability to find particle one in volume               and particle two in volume           
is given by

where the wave function has to be  normalized in the following way:

If the potential does not depend on time, then  we can separate variables

where the spatial wave function obeys the  time-independent Schrödinger equation:

So far, nothing new comparing to one-particle case.

total energy of the system
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Bosons and fermions

If the particle one is in state             and particle  two is in state            , then the total state
can  be written as the simple product (we will ignore spin for now):

Note of caution: by no means assume that all two-particle  states can be separated into simple
product states. All entangled states can not be separated into product states.  Here is example of
the  entangled state.

Suppose each of two particles can be in spin state  up       or down      , then the following state
can not  be separated into product states:

This state means that if the spin of one particle is up, then the spin of the other particle
must  be down. Such state can not be separated into the product state as neither particle is in
definite state of being spin up or spin down.

Equation (1) above assumes that we can tell which particle is particle one and which particle is
particle two. In classical mechanics, you can always identify which particle is which. In quantum
mechanics, you simply can't say which electron is which as you can not put any labels on them

to tell them apart.

There are two possible ways to deal with indistinguishable particles, i.e. to construct
two-particle  wave function that is non committal to which particle is in which state:

Therefore, quantum mechanics allows for two kinds of identical particles: bosons (for the  "+"
sign) and fermions (for the "-" sign). In our non-relativistic quantum mechanics  we accept
the following statement as an axiom:

All particles with integer spin are bosons,
all particles with half integer spin are fermions.
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From the above, two identical fermions can not occupy the same state:

It is called Pauli exclusion principle.

We introduce operator P that interchanges  two particles ( exchange operator)

If particles are identical

Then, we can find solutions to Schrödinger equation that are either symmetric or 
antisymmetric:

Wave function is required to satisfy (2) for  identical particles.
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Example

Suppose we have two non-interacting mass m particles in the infinite square well. The one-particle  

states are:

Case 1: distinguishable particles

Total wave function:

  

The state is doubly degenerate, i.e. two states      and        have the same energy

Ground (lowest) state:

First excited energy state:

Case 2: identical bosons

Ground state:

First excited state:
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Class exercise: find the ground state wave function and energy for the case of identical   
fermions.

Solution:

There is no state with energy 2K as two  fermions can not occupy the same state (they  can't
both have n=1) as

The ground state is
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Exchange forces

Let's consider another example of what symmetrization actually does. We will consider again three
cases:  distinguishable particles, identical bosons, and identical fermions and calculate the
expectation value of  the square of the separation between two  particles.

Case 1: distinguishable particles

       expectation value of        in the one-particle state

       expectation value of        in the one-particle state

       expectation value of        in the one-particle state

Result:
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Case 2: Identical bosons

   Lecture 3 Page 7    



Similarly,

That makes perfect since we can not tell them apart.

Result:

That was the result for distinguishable
particles, let's call it This is an extra term.

Case 3: identical fermions.

Just repeating the case 2 calculations for
and we get

opposite sign comparing to identical bosons
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Conclusions:

(1) If there is no overlap between two functions            and           , then the integral

is zero and all three cases are the same.

Practical conclusion: it is ok to assume that particles with non-overlapping wave functions are
distinguishable.

(2) If there is an overlap, identical bosons tend to be somewhat closer, and identical fermions

tend to be  somewhat further apart than distinguishable particles in the same two states.

Note on spin: total wave function has to be symmetric or antisymmetric, we have to put

together complete  two-electron state:
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