Lecture 23

Review

Schrédinger equation

The general solution of Schrédinger equation in three dimensions (if V does not depend
on time)
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where functions W, (F) are solutions of time-independent Schrddinger equation
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If potential V is spherically symmetric, i.e. only depends on distance to the origin r,
then the separable solutions are
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where R(r) = £ (r) and alr) are solutions of radial
equation r
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Hydrogen-like atom energy levels: En = E,
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Identical particles

Bosons and fermions

In classical mechanics, you can always identify which particle is which. In quantum
mechanics, you simply can't say which electron is which as you can not put any labels on
them to tell them apart.

There are two possible ways to deal with indistinguishable particles, i.e. to construct
two-particle wave function from single particle wave functions Ay .. ¢=) and 4 (#) that is non
committal to which particle is in which state:
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Therefore, quantum mechanics allows for two kinds of identical particles: bosons (for the
"+" sign) and fermions (for the "-" sign). N-particle states are constructed in the same way,
antisymmteric state for fermions (which can be easily written as Slater determinant) and
symmetric state for bosons; the normalization factor is \/{x* . In our non-relativistic quantum
mechanics we accept the following statement as an axiom:

All particles with integer spin are bosons,
all particles with half-integer spin are fermions.

Note that it is total wave function that has to be antisymmetric. Therefore, for example if
spatial wave function for the electrons is symmetric, then the corresponding spin state has
to be antisymmteric. Note: make sure that you can add angular momenta and know what
are singlet and triplet states.

From the above, two identical fermions can not occupy the same state.
It is called Pauli exclusion principle.



Perturbation theory

General formalism of the problem:

Suppose that we solved the time-independent Schrodinger equation for some potential

and obtained a complete set of orthonormal eigenfunctions A{fv? and corresponding
eigenvalues €9 .
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We mark all these solutions and the Hamiltonian with "° " label.
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Now we slightly perturb the potential: Y4 = H + H

The problem of the perturbation theory is to find eigenvalues and eigenfunctions of the
perturbed potential, i.e. to solve approximately the following equation:
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Nondegenerate perturbation theory

We expand our solution as follows in terms of perturbation H'
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First-order correction to the wave function is given by
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Note that as long as m #n, the denominator can not be zero as long as energy levels are

nondegenerate. If the energy levels are degenerate, we need degenerate perturbation theory
( consider later).



The second-order correction to the energy is
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Degenerate perturbation theory
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Suppose now that the states ’\l/\ ,‘\l/,)_ yon . ’\\/ n are degenerate, i.e. have the same
energy £9 .

How to calculate first-order energy correction E1?

In the case of n-fold degeneracy, E! are eigenvalues of n x n matrix
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Variational method

The variational principle let you get an upper bound for the ground state energy
when you can not directly solve the Schrdodinger's equation.

How does it work?

(1) Pick any normalized function VY .

(2) The ground state energy Egs is
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3) Some choices of the trial function \\/ will get your Egs that is close
to actual value.

If you picked a function with a parameter, minimize the resulting expression for <Hy .
Substitute resulting value of the parameter into < H> to get lowest upper bound on Egs.



WKB approximation

This method allows to obtain approximate solutions to the time-independent Schrédinger
equation in one dimension and is particularly useful in calculating tunneling rates
through potential barriers and bound state energies.

"Classical" region, E >V
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General solution is the combination of these two.

If E < V (non-classical region), then p is imaginary but we can still write
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X over non-classical region

Formulas above are derived with the assumption that the potential is slowly varying
in comparison with the wavelength A (or 1/x for E<V). This is not the case for the
turning points, where "classical" region connects with "non classical" region. In this
case WKB approximation breaks down. Note: make sure that you know how to
apply connection formulas to derive quantization conditions
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Scattering
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Differential (scattering) cross-section: ’_D(e) = J}l

Total cross section is defined as the integral of D(g) over all solid angles: é = gb(e) dN

Quantum scattering theory

Our problem: incident plane wave

A(z)= Ae
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traveling in Z direction encounters a scattering potential that produces outgoing spherical

wave. ihe

Particle energy
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Therefore, the solutions of the Schrédinger equation have the general form:
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Partial wave analysis

For spherically symmetric potential, the scattering amplitude may be calculated using
partial wave analysis formula
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The partial wave amplitudes &, are found by solving the Schrédinger equation for the
area where V # 0 and using the boundary conditions. Substituting the expression for
the partial wave scattering amplitude (1) into the formula for the differential cross
section and integrating over all solid angles yields simple expression for the total
scattering cross-section:
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Scattering amplitude in Born approximation.
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As before, the differential and total cross sections are given by
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Notes on the exam preparation & exam taking:

1. Make sure that you know, understand and can use all formulas and concepts
from this lecture.

2. Make sure that you can solve on your own and without looking into any notes
any problem done in class in Lectures or from homeworks (if integrals are
complicated, use Maple, Matematica, etc.)

3. During exam, look through all the problems first. Start with the one you
know best and the one that is shortest to write a solution for.

4. Make sure that you read the problem very carefully and understand what is
being asked. If you are unsure, ask me.

5. To save time, make sure you are not repeating the same calculations. For
example, if you need to do several similar integrals, make sure that you are not
redoing the ones you have already done.

If you are out of time and you have not finished, write an outline of what you
would do to finish the problem if you had time.
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