
Lecture #21

Time-dependent perturbation theory

satisfies

So far, we considered quantum static, as all our potentials did not depend on time.
Therefore, our time dependence was trivial and always the same:

If we want to consider transitions (quantum jumps) between different energy levels, we
need to introduce  quantum dynamics. We will focus on the particular  important
problem: the emission and absorption of radiation by an atom. As a particular useful 
technical application, we will discuss how lasers work.

Two-level systems

We start with a quantum system that has only two orthonormal states,  and  , 
that are eigenstates of the unperturbed Hamiltonian.  

Of course, any state can be expressed as the linear combination of these two states. 

If there is no time-dependent perturbation, the time evolution of such state is described by

Now, we turn on the time-dependent perturbation, described by the Hamiltonian  H'.
The resulting wave function can still be represented as the superposition of our two 
unperturbed functions, since they make a complete set, but the coefficients c now
depend on time: 



What happens during the transition between these two energy levels?

If the system was originally in state a, then ca(t=0)=1 and cb(t)=0 since the     and 
are the corresponding probabilities that measurement of energy will give results Ea

and Eb . As a result of the transition at time t,  ca(t)=0 and cb(t)=1.

Our mission: to determine the coefficients ca(t) and cb(t).

First, we derive the equations for ca(t) and cb(t). To accomplish that, we substitute 
the wave function 

into the Schrödinger equation

with the Hamiltonian



Note that          and     do not depend on time, as they are eigenstates of the
unperturbed Hamiltonian H0.

Next step: separate this equation into two, one containing  and another one containing 
    . To get the first equation for    ,multiply this equation on the left by

and integrate, i.e. take inner product with  . Use inner product designations.
Then, use orthogonality of the          and   wave functions. Introduce the following
designations:

Class exercise: derive equation for 



To get the equation for  , take inner product with  . The resulting 
equation is: 

For most cases, the diagonal matrix elements of the perturbation Hamiltonian H' are 
zero:

The resulting equations become:

These equations are exact for the cases where (1) is true as we made no 
approximations so far. However, there are very few problems which can be 
solved exactly. If the perturbation is small, we can use time-dependent 
perturbation theory. 



Time-dependent perturbation theory

We take the perturbation H'(t) to be small. We start with our system in the 
ground state,      . Therefore, the values of the coefficients are the 
following:

Zeroth-order

If there is no perturbation, then our system just stays in this state forever. 
Therefore, our zeroth-order is (superscript  (0) designates order) :

First order

To get the first-order approximation for the coefficients ca(t) and cb(t), 
we take our zeroth-order values and substitute them into right side of the 
equations that we have just derived.

replace by



Second order

To get second-order approximation, repeat the same thing: plug in your first-order 
result 

into the right size of the general form of the equations for coefficients c: 

Higher orders

To get (n+1)th order, plug in the results from the nth order into the equations …. 
again. Note that the orders are counted in the perturbation potential:

Zeroth order contain no matrix elements of H';
First-order contains one matrix elements of H';
Second-order contains two of them , and so on. 

Now it is time to make an example of the perturbation. We will pick the sinusoidal 

perturbation owing to its relevance to real problems.  



Sinusoidal perturbation

We take the time-dependent perturbation to be

Our system starts in state a. Our goal is to find transition probability into state b.
We will do it as a class exercise together. Our calculations are limited to first order only. 
As before, we assume diagonal terms of H' to be zero.

First, let's determine what is it we need to find. Our system was initially in state a, so the 
transition probability is simply the probability to find it in a state b: 

Step 1.

Substitute perturbation  into our first-order expression for the  cb(t) and integrate 

over time t. Recall that 



The answer is quite cumbersome, so we can make the following simplification:

assuming the "driving" frequency  ω is close to the transition frequency ω0. This is

reasonable since the probability of the transition with the perturbations at other 

frequencies not in the immediate vicinity of ω0 is small. This approximation allows us 

to drop the second term in our result (2) on the previous page. 

Step 2. 

Drop the second term in our solution and write the simplified expression for the 
transition probability that contains only sin function (i.e. no exp).



To analyze this answer, we first plot the transition probability as a function 
of the driving frequency ω.

This confirms our earlier assumption that the transition probability is negligible if the 
driving frequency is far from the natural frequency ω0. As we see, the peak of the 

transition probability is at the natural frequency and quickly falls off. 

Peak height  is .

Next, we plot the transition probability as a function of time. The transition 
probability oscillate sinusoidally. The interesting consequence is that to maximize the 
chance of transition, you need to turn the perturbation off after time 

rather than keeping the perturbation on for longer periods of time. Note that this 
"flopping" is not artifact of the perturbation theory but is also present in the exact 
solution. 


