Lecture 18
Scattering
Classical scattering theory

Problem: given the scattering parameter b, calculate the scattering angle g
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Example: elastic hard-sphere scattering

Our target is a billiard ball of radius R,

S the incident particle is a ball that
ey bounces elastically. The impact
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The scattering angle is
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Therefore, the scattering angle is:
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Scattering
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More general problem: particles incident within an infinitesimal patch of cross-
sectional area d¢ are scattering into an infinitesimal solid angle 4L .
The quantity
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is called the differential (scattering) cross-section.
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Total cross section is defined as the integral of D(g) over all solid angles:
o= gb(e) dN

Class exercise: Find the differential and total cross-sections for hard-sphere
scattering.
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If we have a beam of incident particles, with uniform intensity (luminosity)

l — nhumber of incident particles per

unit area per unit time :_:7

The member of particles entering Jg per unit time is
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Quantum scattering theory

Our problem: incident plane wave
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traveling in Z direction encounters a scattering potential that produces outgoing spherical
wave:
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Therefore, the solutions of the Schrédinger equation have the general form:
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The quantity »{ ( 9) is called scattering amplitude.
It is the probability of scattering in a given direction © .

How is it connected to the differential cross-section?



Volume dV of incident beam (see above) passes through area dé in time dt.
The probability that the particle with speed v passes through this area ds is

=A@”C
/l .

Ip = \(\{’iwf&&l dy = \A\z vdtdg

z

This must be equal to the probability that the particle scatters into the solid angle J52
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Therefore, to solve the scattering problem, we need to calculate the scattering
amplitude . (o).



Partial wave analysis

Our potential is spherically symmetric —>

The solutions of the Schrédinger equation are
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and "centrifugal contribution" is negligible
Radial equation becomes
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The general solution is

Rr _ik
/'/L=C6{£ + De "

e AN

outgoing spherical wave incoming
Som9 P spherical wave = D=0
i kr

@:CQ

P

~




