Lecture 18
Scattering
Classical scattering theory
Problem: given the scattering parameter b, calculate the scattering angle θ

Example: elastic hard-sphere scattering

Our target is a billiard ball of radius R , the incident particle is a ball that bounces elastically. The impact parameter is

$$
b=R \sin \alpha
$$

b

The scattering angle is

$$
\begin{gathered}
\theta=\pi-2 \alpha \\
\alpha=\frac{1}{2}(\pi-\theta) \\
b=R \sin \left(\frac{\pi}{2}-\frac{\theta}{2}\right)=R \cos \frac{\theta}{2}
\end{gathered}
$$

Therefore, the scattering angle is:

$$
\theta= \begin{cases}2 \cos ^{-1}(b / R) & \text { if } \quad b \leqslant R \\ 0 & \text { if } \quad b \geqslant R\end{cases}
$$

Scattering

More general problem: particles incident within an infinitesimal patch of crosssectional area $d \sigma$ are scattering into an infinitesimal solid angle $d \Omega$. The quantity

$$
D(\theta)=\frac{d \zeta}{d \Omega}
$$

is called the differential (scattering) cross-section.

$$
\begin{aligned}
& d \sigma=b d b d \phi \\
& d \Omega=\sin \theta d \theta d \phi
\end{aligned}
$$

$$
D(\theta)=\frac{b}{\sin \theta}\left|\frac{d b}{d \theta}\right|
$$

Total cross section is defined as the integral of $D(\theta)$ over all solid angles:

$$
\zeta \equiv \int D(\theta) d \Omega
$$

Class exercise: Find the differential and total cross-sections for hard-sphere scattering.

$$
\begin{gathered}
b=R \cos \frac{\theta}{2} \quad \frac{d b}{d \theta}=-\frac{1}{2} R \sin \frac{\theta}{2} \\
D(\theta)=\frac{b}{\sin \theta}\left|\frac{d b}{d \theta}\right|=\frac{R \cos \frac{\theta}{2}}{\sin \theta} \frac{1}{2} R \sin \frac{\theta}{2}=\frac{R^{2}}{4} \\
\sigma=\left(R^{2} / 4\right) \int d \Omega=\pi R^{2}
\end{gathered}
$$

If we have a beam of incident particles, with uniform intensity (luminosity)

$$
\begin{aligned}
\mathcal{L} \equiv & \text { number of incident particles per } \\
& \text { unit area per unit time } \Rightarrow
\end{aligned}
$$

The member of particles entering $d \sigma$ per unit time is

$$
\begin{gathered}
d N=\mathcal{L} d \sigma=\mathcal{L} X(\theta) d \Omega \Rightarrow \\
D(\theta)=\frac{1}{\mathcal{L}} \frac{d N}{d \Omega}
\end{gathered}
$$

Quantum scattering theory

Our problem: incident plane wave

$$
\psi(z)=A e^{i k z}
$$

traveling in Z direction encounters a scattering potential that produces outgoing spherical wave:

Therefore, the solutions of the Schrödinger equation have the general form:

$$
\begin{aligned}
& \psi(r, \theta) \approx A\left\{e^{i k z}+f(\theta) \frac{e^{i k r}}{r}\right\} \text { for large } r \\
& \text { plane } \\
& \text { ware } \\
& \uparrow \\
& \text { spherical } \\
& \text { wave } \\
& k=\frac{\sqrt{2 m E}}{\hbar} \nwarrow{ }_{\begin{array}{c}
\text { energy of the incident } \\
\text { particles }
\end{array}}
\end{aligned}
$$

The quantity $f(\theta)$ is called scattering amplitude.
It is the probability of scattering in a given direction θ.
How is it connected to the differential cross-section?

Volume dV of incident beam (see above) passes through area $\mathrm{d} \sigma$ in time ct. The probability that the particle with speed v passes through this area $\mathrm{d} \sigma$ is

\[

\]

This must be equal to the probability that the particle scatters into the solid angle $d \Omega$:

$$
\begin{aligned}
& d P=\left|\psi_{\text {scattered }}\right|^{2} d y=\frac{|A|^{2}|f|^{2}}{r^{2}}(v d t) r^{2} d \Omega \\
& A \frac{e^{i k z}}{r} f(\theta)
\end{aligned}
$$

Therefore $|A|^{2} v d t d \zeta=\frac{|A|^{2}|f(\theta)|^{2}}{r^{2}}(v d t) r^{2} d \Omega$

$$
d \sigma=|f(\theta)|^{2} d \Omega \Rightarrow
$$

$$
D(\theta)=\frac{d \zeta}{d \Omega}=|f(\theta)|^{2}
$$

Therefore, to solve the scattering problem, we need to calculate the scattering amplitude $f(\theta)$.

Partial wave analysis
Our potential is spherically symmetric $\quad \Rightarrow$
The solutions of the Schrödinger equation are

$$
\psi(r, \theta, \phi)=R(r) Y_{e}^{m}(\theta, \phi)
$$

spherical harmonic
$u(r)=r R(r)$
satisfies

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} u}{d r^{2}}+\left[v(r)+\frac{\hbar^{2}}{2 m} \frac{l(l+1)}{r^{2}}\right] u=E u
$$

(radial Schrödinger equation) contribution"

Very large $r \longrightarrow V \rightarrow 0$
and "centrifugal contribution" is negligible
Radial equation becomes

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 m} \frac{d^{2} u}{d r^{2}} \approx E u \\
& \frac{d^{2} u}{d r^{2}} \approx-k^{2} u
\end{aligned}
$$

The general solution is

