
Now, we take

and take Z to be a parameter. We re-write the Hamiltonian as

Note, that we did not change our Hamiltonian (we are not allowed to do that  in the
variational method). We just added  and subtracted

We now calculate the expectation value

with our "new" trial function

Lecture 14

The ground state of Helium 

Our initial trial function was:



Note: if Z=2
as before.

We  need to calculate

where is the Bohr radius



We already calculated the third term:

For convenience, let's express all terms via E1:

For our new trial function,

Putting it all together, we get



Therefore, for any Z

We yet the lowest upper bound when  is minimized.

Class exercise: minimize  . Find Z and get the lowest upper bound for Egs (i.e. a
number in eV).

Even closer to the experimental value -79.0 eV!



Summary: variational method

The variational principle let you get an upper bound for the ground state energy
when you can not directly solve the Schrödinger's equation.

How does it work?

(1) Pick any normalized function  .

(2) The ground state energy Egs is

3) Some choices of the trial function will  get your Egs that is close
to actual value.

If you picked a function with a parameter, minimize  the resulting expression for  .
Substitute resulting value of the parameter into  to get lowest upper bound on Egs.



The WKB approximation

WKB: Wentzel, Kramers, Brillouin

This method allows to obtain approximate solutions to the time-independent Schrödinger  

equation in one dimension and is particularly useful in calculating tunneling rates through 
potential barriers and bound state energies.

Main idea:

(1) If potential V is constant and energy E of  the particle is E>V, then the particle wave
function has the form

General solution is a linear superposition of  the two.
The wave function is oscillatory with a  fixed wavelength
and fixed amplitude A.

(2) If V (x) is not constant, but varies slow in comparison with the wavelength λ  in a way

that it is essentially constant over many λ

then the wave function is practically sinusoidal, but wavelength and  amplitude slowly
change with x.

Summary: rapid oscillations are modulated by gradual  changes in amplitude and
wavelength.

If E<V and V is constant, then wave function is

If V is not constant but varies slowly with  comparison to  , then the wave function is 
practically exponential but A and κ are slowly-varying functions of x.

Problem: turning points when V ≈ E. Then, V(x) is not slowly varying with comparison to
λ or 1/κ  since λ (1/κ)           .



The "classical" region

Let's now solve the Schrödinger equation using WKB approximation.

We assume for now that E>V (x) and p is real.
ψ is some complex function, and therefore  can be expressed as

Class exercise: plug this expression (1) back into (2) and separate real and imaginary

parts into two equations.

Classical region



We solve Eq.(4) first:

To solve Eq.(4), we assume that amplitude A varies slowly, so term A" is
negligible.

General solution is the combination of these two.


