Lecture \#11
Degenerate perturbation theory
Problem 1
Consider the three-dimensional infinite cubical well

$$
V(x, y, z)=\left\{\begin{array}{l}
0, \text { if } 0<x<a, 0<y<a, 0<z<a \\
\infty
\end{array}\right.
$$

The stationary states are

$$
\psi_{n_{x}, n_{y}, n_{z}}^{0}(x, y, z)=\left(\frac{2}{a}\right)^{3 / 2} \sin \left(\frac{\pi_{x} n}{a} x\right) \sin \left(\frac{\pi_{y} n}{a} y\right) \sin \left(\frac{\pi_{z} n}{a} z\right),
$$

n_{x}, n_{y}, n_{z} are positive integers. The energies are given by

$$
E_{n_{x}, n_{y}, n_{z}}^{0}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right) .
$$

Question for the class:
What are the energies of ground and first excited states?
Are these states degenerate? If so, what are the degeneracies?
The ground state is nondegenerate: $\quad n_{x}=n_{y}=n_{z}=1 \quad \psi_{111}$

$$
E_{1 I 1}^{0} \equiv E_{0}^{0}=3 \frac{\pi^{2} \hbar^{2}}{2 m a^{2}}
$$

Next three states all share the same energy (triply degenerate):

$$
\begin{array}{lccl}
n_{x} & n_{y} & n_{z} & E_{1}^{0}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}(1+1+4)=\frac{3 \pi^{2} \hbar^{2}}{2 m a^{2}} \\
1 & 1 & 2 & \\
1 & 2 & 1 & \psi_{112}, \psi_{121}, \psi_{211} \\
2 & 1 & 1 & 1
\end{array}
$$

We now introduce perturbation

Question for the class:
What is first-order correction to the ground state energy?

$$
\begin{aligned}
& \int \sin ^{2}(a x) d x=-\frac{1}{2 a} \cos (a x) \sin (a x)+\frac{x}{2} \\
& \left.E_{0}^{1}=<\psi_{111}\left|H^{\prime}\right| \psi_{111}\right)= \\
& =\left(\frac{2}{a}\right)^{3} V_{0} \int_{0}^{a / 2} \sin ^{2}\left(\frac{\pi}{a} x\right) d x \int_{0}^{a / 2} \sin ^{2}\left(\frac{\pi}{a} y\right) d y \int_{0}^{a} \sin ^{2}\left(\frac{\pi}{a} z\right) d z \\
& =\left(\frac{2}{a}\right)^{3}\left(\frac{a / 2}{2}\right)^{2} \frac{a}{2}=\frac{8}{\alpha^{3}} \frac{a}{2} \frac{a^{2}}{16} \cdot V_{0}=\frac{V_{0}}{4}
\end{aligned}
$$

Our next mission is to calculate the first-order correction to the energy of the first excited state. Here, the states are degenerate and we need to use degenerate perturbation theory, i.e. we need to calculate all elements of the 3×3 matrix

$$
W_{i j}=\left\langle\psi_{i}^{0}\right| H^{\prime}\left|\psi_{j}^{0}\right\rangle
$$

Class exercise: calculate all elements of the matrix

$$
\begin{aligned}
& W=\left(\begin{array}{lll}
W_{a a} & W_{a b} & W_{a c} \\
W_{b a} & W_{b b} & W_{b c} \\
W_{c a} & W_{c b} & W_{c c}
\end{array}\right) \\
& \psi_{a} \equiv \psi_{112}, \quad \psi_{b}=\psi_{121}, \quad \psi_{c}=\psi_{211} \\
& W_{i j}=\left\langle\psi_{i}^{0}\right| H^{\prime}\left|\psi_{j}^{0}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \int \sin ^{2}(a x) d x=-\frac{1}{2 a} \cos (a x) \sin (a x)+\frac{x}{2} \\
& \int \sin \left(b_{1} x\right) \sin \left(b_{2} x\right) d x=\frac{\sin \left[\left(b_{1}-b_{2}\right) x\right]}{2\left(b_{1}-b_{2}\right)}-\frac{\sin \left[\left(b_{1}+b_{2}\right) x\right]}{2\left(b_{1}+b_{2}\right)}
\end{aligned}
$$

for $\quad\left|b_{1}\right| \neq\left|b_{2}\right|$
Solution:

$$
\begin{aligned}
& W_{a a}=\left\langle\psi_{112}\right| H^{\prime}\left|\psi_{112}\right\rangle=\left(\frac{2}{a}\right)^{3} V_{0}^{a / 2} \sin ^{2}\left(\frac{\pi}{a} x\right) d x \\
& \int_{0}^{a / 2} \sin ^{2}\left(\frac{\pi}{a} y\right) d y \int_{0}^{1} \sin ^{2}\left(\frac{2 \pi}{a} z\right) d z=\left(\frac{\iota^{2}}{a}\right)^{3} V_{0}\left(\frac{a / 2}{2}\right)^{2} \frac{a}{2}=\frac{V_{0}}{4}
\end{aligned}
$$

Same as the ground state

$$
\begin{aligned}
& W_{b b}=W_{c c}=W_{a a}=\frac{V_{0}}{4} \\
& W_{a b}=\left\langle\psi_{112}\right| H^{\prime}\left|\psi_{121}\right\rangle=\left(\frac{2}{a}\right)^{3} V_{0} \int_{0 / 2} \sin ^{2}\left(\frac{\pi}{a} x\right) \\
& \int_{0}^{a / 2} \sin \left(\frac{\pi^{1}}{a} y\right) \sin \left(\frac{2 \pi}{a} y\right) d y \int_{0}^{a} \sin \left(\frac{2 \pi}{a} z\right) \sin \left(\frac{\pi}{a} z\right) d z
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{a / 2} \sin \left(\frac{\pi}{a} y\right) \sin \left(\frac{2 \pi}{a} y\right) d y=\left.\left[\frac{\sin \left(-\frac{\pi}{a} y\right)}{2 \cdot\left(-\frac{\pi}{a}\right)}-\frac{\sin \left(\frac{3 \pi}{a} y\right)}{2 \cdot \frac{3 \pi}{a}}\right]\right|_{0} ^{a / 2} \\
& =a \frac{\sin \frac{\pi}{2}}{2 \pi}-\frac{a}{6 \pi} \sin \left(\frac{3 \pi}{2}\right)=\frac{a}{2 \pi}+\frac{a}{6 \pi}=\frac{2 a}{3 \pi} \\
& \int \sin \left(b_{1} x\right) \sin \left(b_{2} x\right) d x=\frac{\sin \left[\left(b_{1}-b_{2}\right) x\right]}{2\left(b_{1}-b_{2}\right)}-\frac{\sin \left[\left(b_{1}+b_{2}\right) x\right]}{2\left(b_{1}+b_{2}\right)} \\
& b_{1}=\frac{\pi}{a}, \quad b_{2}=\frac{2 \pi}{a}
\end{aligned}
$$

$$
\int_{0}^{a} \sin \left(\frac{2 \pi}{a} z\right) \sin \left(\frac{\pi}{a} z\right) d z=0 \quad \begin{aligned}
& \sin c \text { we will get } \\
& \sin \pi \text { and } \sin 3 \pi
\end{aligned}
$$

$$
W_{a b}=W_{b a}=0
$$

$$
w_{a c}=\left\langle\psi_{112}\right| H^{\prime}\left|\psi_{211}\right\rangle=0
$$

since we get the

$$
W_{c a}=0
$$ same z integral as in Nab

$$
\begin{aligned}
& W_{b c}=W_{c b}=\left\langle\psi_{121}\right| H^{\prime}\left|\psi_{211}\right\rangle= \\
& =\left(\frac{2}{a}\right)^{3} V_{0} \int_{0}^{a / 2} \sin \left(\frac{\pi}{a} x\right) \sin \left(\frac{2 \pi}{a} x\right) d x \underbrace{x \int_{0}^{a / 2} \sin \left(\frac{2 \pi}{a} y\right) \sin \left(\frac{\pi}{a} y\right) d y}_{a / 3 \pi} \\
& \times \underbrace{\int_{0}^{a} \sin ^{2}\left(\frac{\pi}{a} z\right) d z}_{a / 2}=\underbrace{\frac{8}{a^{3}} \frac{4 a^{2}}{9 \pi^{2}} \frac{a}{2} V_{0}}_{a / 3 \pi}=\frac{16}{9 \pi^{2}} V_{0}
\end{aligned}
$$

Result: $W=\frac{V_{0}}{4}\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & k \\ 0 & k & 1\end{array}\right) \quad K=\left(\frac{8}{3 \pi}\right)^{2} \approx 0.7205$

The characteristic equation for $\frac{4 \mathrm{~W}}{V_{0}}$:

$$
\begin{array}{r}
\left|\begin{array}{ccc}
1-w & 0 & 0 \\
0 & 1-w & k \\
0 & k & 1-w
\end{array}\right|=(1-w)\left[(1-w)^{2}-k^{2}\right]=0 \\
(1-w)(1-w-k)(1-w+k)=0 \\
\begin{array}{ll}
w_{1}=1 \\
w_{2}=1+k \\
w_{3}=1-k & w_{2} \approx 1.705 \\
w_{3} \approx 0.295
\end{array}
\end{array}
$$

The initial energy level $\quad E_{1}^{0}$ will split into three due to the perturbation:

"Good" unperturbed states are linear combination of the form

$$
\psi^{0}=\alpha \psi_{a}+\beta \psi_{b}+\gamma \psi_{c},
$$

where the coefficients $\alpha_{1} \beta, \gamma$ are the eigenvectors of W.

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & k \\
0 & k & 1
\end{array}\right)\left(\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right)=w\left(\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right)
$$

Exercise for the class: find the eigenvectors and write out three resulting

states ψ_{0}.
$\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & k \\ 0 & k & 1\end{array}\right)\left(\begin{array}{l}\alpha \\ \beta \\ \gamma\end{array}\right)=w\left(\begin{array}{l}\alpha \\ \beta \\ \gamma\end{array}\right)$
\#1 $w_{1}=1 \quad\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & k \\ 0 & k & 1\end{array}\right)\left(\begin{array}{l}\alpha \\ \beta \\ \gamma\end{array}\right)=\left(\begin{array}{l}\alpha \\ \beta \\ \gamma\end{array}\right)$

$$
\left(\begin{array}{c}
\alpha \\
\beta+k \gamma \\
\rho k+\gamma
\end{array}\right)=\left(\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right) \Rightarrow \alpha=1, \beta=\gamma=0 \quad \psi^{0}=\psi a
$$

\#2 $\quad w_{2}=1+k \quad\left(\begin{array}{c}\alpha \\ \beta+k \gamma \\ \beta k+\gamma\end{array}\right)=1+k\left(\begin{array}{c}\alpha \\ \beta \\ \gamma\end{array}\right)$

$$
\begin{gathered}
\alpha=0 \quad \beta+k \gamma=\beta+k \beta \Rightarrow \gamma=\beta \Rightarrow\left(\begin{array}{c}
0 \\
y \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right) \Rightarrow \\
\psi^{0}=\frac{1}{\sqrt{2}}\left(\psi_{b}+\psi_{c}\right)
\end{gathered}
$$

$$
\begin{gathered}
\text { \#3 } w_{3}=1-k \quad\left(\begin{array}{c}
\alpha \\
\beta+k \gamma \\
\beta k+\gamma
\end{array}\right)=(1-k)\left(\begin{array}{c}
\alpha \\
\beta \\
\gamma
\end{array}\right) \begin{array}{c}
\alpha=0 \\
\beta+k \gamma=\beta-k \beta \Rightarrow \\
\gamma=-\beta
\end{array} \\
\left(\begin{array}{c}
0 \\
1 / \sqrt{2} \\
-1 / \sqrt{2}
\end{array}\right) \Rightarrow \psi^{0}=\frac{1}{\sqrt{2}}\left(\psi_{b}-\psi_{c}\right)
\end{gathered}
$$

If we apply nondegenerate perturbation theory to these three states, we will get correct results. We will not get correct results if we apply nondegerate perturbation theory to original unperturbed states ψ_{a}, ψ_{b}, and ψ_{c}.

