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Lecture 10

Perturbation theory

Nondegenerate perturbation theory: summary

The problem of the perturbation theory is to find eigenvalues and eigenfunctions of the
perturbed potential, i.e. to solve approximately the following equation:
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using the known solutions of the problem
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The first-order energy is given by: E N
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First-order correction to the wave function is given by :
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The second-order correction to the energy is
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Problem 1 (6.1)

Suppose we put a delta-function bump in the center of the infinite square well:
{
= &
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where o is a constant.

(a) Find the first-order correction to the allowed energies. Explain why energies are not
perturbed for even n.

(b) Find the first three nonzero terms in the expansion (2) of the correction to the
ground state, «f'l .

Solution:

0 0 0 0 .
(a) Solutions of the W . = E_ Yo oare:

A s (2 s (B %)

For even n, the wave function is zero at the location of the perturbation:

0 . : n
waafs = s [F s () (E e ()

J(_—_m/

|5

so it never "feels" H'.
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(b) First-order correction to the wave function is given by
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Sin ( §> is zero for even m, so the first three nonzero termsarem =3, m =5,
andm =7.
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Problem 2 [6.4 (a)]

Find the second-order correction to the energies for the same potential .

Solution: The second-order correction to the energy is
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Degenerate perturbation theory

If the unperturbed states are degenerate, then the denominator

-] 9
EA-Em
in the second order expression is zero, and, unless the numerator
9 / 9 —
2y’ 1 I, 2 =9

is zero as well in this case, the perturbation theory in the way we formulated it fails.
First, we consider a case of a two-fold degeneracy, i.e. when there are two states for
each energy.

Two - fold degeneracy

J o
We have two states ‘\%;L and Y, that are degenerate, i.e. they have the same energy £
0 4 o 4 0 0 o o 0 I 0
Hvt, = EYe  HY, = 8%, <Y IteV=0,
R R A A A M R
% o0 b b -
Linear combination of these states

S R

- - 0 - - o
is also an eigenstate of H  with eigenvalue L.

We want to solve

HY= Ey,  H= H +H,

E= E'+ g'x..
’\J(——’\{/°+f\_|/' 4.,
Ho,\{/\ + H,\{/o - Eo’\{/L . Ei’\ko (g>

0
This time we multiply this equation from the left by “]La and integrate, i.e. take inner
product with A} ¢ .
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We now plug “{'o=°L“fiu+f“{’L
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1
dE = O(WM,'*J!WM:, ()

[}
Wj; are known since we know ‘¥ . =) we can calculate them.

If we take inner product of equation (5) with /\{‘L we get

4

fE = AW, -+ /QWb\o %)

We now solve this system of equations (6), (7) for EL.
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i

i
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Fundamental result of degenerate perturbation theory: two roots correspond to two perturbed
energies (degeneracy is lifted).

4

Il q=0 =  Wib= o0 and
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if we could guess some good linear combinations “fi and‘f: , then we can just use nondegenerate
perturbation theory.
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Theorem: let A be a hermitian operator that commutes with H® and H'. If 4. and
f\’r; that are degenerate eigenfunctions of H°, are also eigenfunctions of A with

distinct eigenvalues,

Ao = pte, Ayl = vl , PV

then Wa»b=0 and we can use degenerate perturbation theory.

Higher-order degeneracy: if we rewrite our equations

1
dE = O(WKL+J;WWL’ Waa
=) "
4

ﬁ E = OL wa + /) Wb\g b o
we see that E! are eigenvalues of the matrix

wké\, l/‘/&il_-;

w =
[/\}\ow Wbb

In the case of n-fold degeneracy, E! are eigenvalues of n x n matrix

We = <A TH Ty
\) J

"Good" linear combinations of unperturbed states are eigenvectors of W.
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