Lectures 20 -21

Transitions between hydrogen stationary states

The energy of the emitted light (photons) is given by the difference in energy between
the initial and final states of hydrogen atom
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) E(eV)
oo 0.00
: 038 Paschen series: transitions to the
A R s | Excited Nf = 3 state (infrared).
3 *wru!np 15 states
P aschen
YUYYYY serigs . .
z Balmer 340 Balmer series: transitions to the
series nf = 2 state (visible).

uv

Lyman

series

TYYYY grond  Lyman series: transitions to the ground
1 -136 e _ .
nf = 1 state (ultraviolet).

Energy levels of the hydrogen atom with some of the
tratisiti ons betw een them that give rise to the spectral
linesindicated

The wavelengths (nm) in the Lyman series are all ultraviolet: ng = L

n: 2 3 4 5 6 7 8 9 10 11 o0

2

Wavelength (nm) 121.6 1025 972 949 93.7 93.0 926 923 921 919 091.15

Balmer series Ng=2
Transition of n 352 42 552 652 752 852 92 ioz
Name H-a H-B H-y H-0 H-€ H-C H-n
Wavelength (nm) [21 656.3 486.1 434.1 410.2 397.0 388.9 383.5 364.6
Color Red Blue-green Violet Violet Violet Violet (Ultraviolet) (Ultraviolet)

Note: The visible spectrum is the portion of the electromagnetic spectrum that is
visible to (can be detected by) the human eye. Electromagnetic radiation in this range
of wavelengths is called visible light or simply light. A typical human eye will respond to
wavelengths in air from about 380 to 750 nm.

Another note: at room temperature most of hydrogen atoms are in the ground state; so
one needs to populate excited states to see the emission spectra.
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Angular momentum

Classically, angular momentum of a particle with respect to the origin is defined as
Lx = YP2— 2Py
L-:FXP L—‘a - 2Fx"XP.?_~

Ly = xPa ~ ?Px

Quantum angular momentum operator is obtained by taking

RN
PX h X Review: C rC)P5_] = C'k gb\)
P»O—W'L{T}— f—‘i‘)f‘;3=o
% Cpepsd=o
PZ—) —ilﬁ a}; ©) = XY

Let's check if operators Lx and Ly commute:
CLy, L4V = Cpa- 2py, Tpx - xpa
= Chpa, 2p) ~l2py 2P ] - EW;/{Q + Czp,, xp2)

all Pz, x, % all
SIS commule
_ ik vk
= 4pr CPa ) * by D2 Pl = b (xpy - ypx)
Commu COW\W\"\R
with 'Z.P} it 2P L+~
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I:Lx; LM‘]" i% L%

Note that we do not need to do all this work to get two other commutators since
we can use cyclic permutation of indices (from definition of cross product):

XY, Yyd T, T X

Lx = YpPa- %P\}
Ll

L20.P4

Lo L)k
Axb = A, a, a3
b\ L)L bE

What is the significance of this?
Since Lx Ly, and L; do not commute,
they are incompatible observables.

Incompatible observables can not have
a complete set of common eigenfunctions.

CL. 6. 2 _1': l<L,y7)
x Y 2

What about the square of the total angular momentum L * ,?

(L% Lx])=tL Lf/f& * [L;, L1+ CLy L2

1)

LyLly Ly 1 Ly Ly + LDl L)+l LIL
-

- vy—

= —H:L;.

We used:

-ihla
- ifL/L%— {%L?/Ly + HiL/{L? L2t L, =0

—_—

i'ﬁL.}

CAB C) = ACh c) + [ ACTB|
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2 2 2
CL,Lx]l=0 L, Ly)=0 [L*%L,]=0
Class exercise:

(v Fnd [, L+] and Cla L-7, where
L+:L.X+’LL\3 Qné L~= LX“’I:L?
() Fnd CLT, L4T)

Solution: A %L 9
m

[le, L) = DLy Lxexily) = Cg L]

£ lly, Ly = ikly = dikle = 24+ L,
‘—’V_/
— ik Ly

:i’kLi [L2

LS L) = L0 Le*ily] 50
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What are eigenvalues and eigenfunctions of the angular momentum operators?
Since Ly| L Y and L;,_ do not commute and there are no complete set of common
eigenfunctions, we will look for simultaneous eigenfunctions of Lz and one of the

components. We will pick L5 .

First, we will use algebraic technique to the find the eigenvalues. This technique is
very similar to the one we used to find allowed energies of the harmonic oscillator.

Eigenvalue problem:

We are looking for eigenvalues >\ and /(4 .

L §= 24 Lo§ = /A}c
g is the corresponding eigenfunction.

Step 1

z
It f is eigenfunctionof L, then L 4,{ is also eigenfunction, with the same
eigenvalue )\ : - '

Ll(Liﬁ - Li(':,:{): Ly 2 = 2(ef)
AL

Step 2 Class exercise #2:

What is L}(LJL-C)? Hink. odd omd subtract L+ Lad

L;‘.(Lig) = L%Lifp - Lyl = LiLz-‘§
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LLCLsS) = Caxh)Clss)
e \new Maev\\/aJMb

Therefore, (L + £) isan eigenfunction of Lo with new eigenvalue m= &,

We name L + "raising" operator since it increases the eigenvalue of L o
by 4 and/ L _ "lowering operator" since it lowers the eigenvalue of ( by %.

(Remember @ 4 for harmonic oscillator!)

Step 3 Ladder of angular momentum states.

For each ) ,we now have the "ladder" of states:

. "'OP mngl‘

Eigenvalue of Lz \L Eigenfunction of L 5

eh &l
1o AL
M3k L2 r radsing'
M-+t 2k L f operator
Mk Lef
M § _
MA—h L-§ L_
-2k L= 5 “@owam'r\?“
OPe(‘xl\oh
Lk £ \/
"bottom rung"

If we keep applying L+ , We have to eventually reach the "top rung" since the
z-component can not exceed the total. We call the corresponding eigenfunction ,F L
and the corresponding eigenvalue £ % .

Ly -YL-'—‘O
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At the "top rung" Loy g,c =

L

Step 4 /—J

We now find this )\ .

e S,
e oAl

L20. P8

To accomplish that, we need to know how to express L+ L — via L
and Ly - We will find out why in a moment.

Class exercise #3:

Prove that

L.l

b

2
L.z_—_i—_‘i'{l.g_

il -ty L) = L7

—J3_ 0
Ly, L\aj = 1hly

1l

L - L%zi'kL%

2

Therefore, | = L 4 L - -I-LE

Ll’j:{:: CLQL_‘,

= L-L 'j:{:”"L-;'g-L —(—’hL%’}t

sma L+ §.20

\_V_Ja-
12
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A= % L(L+4)

\1, IS mMaximum a&(aem/w@u«t '7;{ L2
L%J;& = tejce

Step 5

Now, we note that there must be "bottom rung" for the same reason and

L—*C\,, =0
_ u
L> ’gb “% ’Lv

Lowest eigenvalue of L,

corresponding eigenfunction

2,
L l&:h =a b, remember that eigenvalue of L.
is the same for the entire ladder

0
Again, we use: Ll_g_\p = (LVE_ + I_LZ - tla ) f,

Sinca L_£b= o

= Uy - hledy = WL d, - KR =RTR(E-0)S,

- K—f'y_/
"L He
G =he (214
VV\J
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Step 6

We now compare results of the previous two steps, where we got ) from conditions
for bottom and top rungs:

Nt (L 4 4) =FZ( L -1)
top botdorm

(LA = 2 (L -1) =7

4 Z = L4 — can't be since bottom step of the ladder

or can not be higher then the top step!

(2) E = - (_ <—— our result

Our results:

We were looking for information about eigenvalues ) and /bt:
2
L {Y - D"E La—f = /“f

(1) We found that /4».vw‘i7\ Lg,:( = t"’\-f

let's just call this quantity m

(2) The values of m range from -/ to [. There are N integer steps between m = -/
and m = [.

~-L+N = =N =

[ and m can be integer or half-integer.

Summary:

m 2
Eigenfunctions —FQ of L and L} are labeled by m and [:

2 M ~ 2 m ™M _ ”
L™ (7 = b+ {D  Lyd, =Hmd,
4 2
t=0,%,1,3,2.
1
For a given value of [, there are 2/+1 values of m: m = 'Z, ya i,_‘_)é ) 2.
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