Transitions between hydrogen stationary states
The energy of the emitted light (photons) is given by the difference in energy between the initial and final states of hydrogen atom

$$
\begin{aligned}
& E_{\gamma}=E_{i}-E_{f}=-E_{1}\left(\frac{1}{n_{i}^{2}}-\frac{1}{n_{f}^{2}}\right) \\
& E_{1}=-\left[\frac{m}{2 \hbar^{2}}\left(\frac{e^{2}}{4 \pi \varepsilon_{0}}\right)^{2}\right]=-13.6 \mathrm{eV} \\
& E_{\gamma}=h \nu \begin{array}{c}
\uparrow \\
\text { frequency }
\end{array}
\end{aligned}
$$

The wavelength is given by $\quad \lambda=c / \nu \Rightarrow$

$$
\begin{aligned}
\frac{1}{\lambda}=\frac{1}{h c} E_{\gamma}=\underbrace{\frac{m}{4 \pi c \hbar^{3}}\left(\frac{e^{2}}{4 \pi \varepsilon_{0}}\right)^{2}}_{\text {Rydberg constant } \mathbb{R}}\left[\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right] \\
\end{aligned}
$$

$$
\frac{1}{\lambda}=R\left[\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right]
$$

Example:


$$
\begin{aligned}
& \lambda=10^{-7} \frac{1}{1.097} \frac{1}{1-1 / 4} \mathrm{~m} \\
& =121.5 \times 10^{-9} \mathrm{~m}=121.5 \mathrm{~nm}
\end{aligned}
$$



Energy levels of the hydrogen atom with some of the transitions between them that give rise to the spectral lines indicated.

Paschen series: transitions to the $\mathrm{n}_{\mathrm{f}}=3$ state (infrared).

Balmer series: transitions to the $\mathrm{n}_{\mathrm{f}}=2$ state (visible).

Lyman series: transitions to the ground $\mathrm{n}_{\mathrm{f}}=1$ state (ultraviolet).

The wavelengths ( nm ) in the Lyman series are all ultraviolet: $\quad n_{f}=1$

| $\mathbf{n}_{i}$ | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | $\infty$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Wavelength (nm) | $\mathbf{1 2 1 . 6}$ | 102.5 | 97.2 | 94.9 | 93.7 | 93.0 | 92.6 | 92.3 | 92.1 | 91.9 | 91.15 |

Balmer series $\quad n_{f}=2$

| Transition of $\boldsymbol{n}$ | $3 \rightarrow 2$ | $4 \rightarrow 2$ | $5 \rightarrow 2$ | $6 \rightarrow 2$ | $7 \rightarrow 2$ | $8 \rightarrow 2$ | $9 \rightarrow 2$ | $\infty$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Name | $\mathrm{H}-\mathrm{a}$ | $\mathrm{H}-\beta$ | $\mathrm{H}-\mathrm{\gamma}$ | $\mathrm{H}-\delta$ | $\mathrm{H}-\varepsilon$ | $\mathrm{H}-\zeta$ | $\mathrm{H}-\eta$ |  |
| Wavelength (nm) <br> [2] $]$ <br> 60lor | $\underline{\text { Red }}$ | Blue-green | Violet | Violet | Violet | Violet | (Ultraviolet) | (Ultraviolet) |

Note: The visible spectrum is the portion of the electromagnetic spectrum that is visible to (can be detected by) the human eye. Electromagnetic radiation in this range of wavelengths is called visible light or simply light. A typical human eye will respond to wavelengths in air from about 380 to 750 nm .

Another note: at room temperature most of hydrogen atoms are in the ground state; so one needs to populate excited states to see the emission spectra.

Angular momentum

Classically, angular momentum of a particle with respect to the origin is defined as

$$
L=r \times p \quad\left\{\begin{array}{l}
L_{x}=y p_{z}-z p_{y} \\
L_{y}=z p_{x}-x p_{z} \\
L_{z}=x p_{y}-y p_{x}
\end{array}\right.
$$

Quantum angular momentum operator is obtained by taking

$$
\begin{aligned}
& p_{x} \rightarrow-i \hbar \frac{\partial}{\partial x} \\
& p_{y} \rightarrow-i \hbar \frac{\partial}{\partial y} \\
& p_{z} \rightarrow-i \hbar \frac{\partial}{\partial z}
\end{aligned} \quad \begin{aligned}
& \text { Review: } \\
& {\left[r_{i}, p_{j}\right]=i \hbar \delta_{i j}} \\
& {\left[r_{i}, r_{j}\right]=0} \\
& {\left[p_{i}, p_{j}\right]=0} \\
& i, j=x, y, z
\end{aligned}
$$

Let's check if operators $L_{x}$ and $L_{y}$ commute:

$$
\begin{aligned}
& {\left[L_{x}, L_{y}\right]=\left[y p_{z}-z p_{y}, z p_{x}-x p_{z}\right]} \\
& =\left[y p_{z}, z p_{x}\right]-\left[z p_{y}, z p_{x}\right]^{0}-\left[y p_{z}, \not / p_{z}\right]+\left[z p_{y}, x p_{z}\right] \\
& \begin{array}{l}
z_{1} p_{x} p_{y} \text { all } \quad p_{z_{1}} x_{1} y \text { all } \\
\text { commute }
\end{array} \\
& =\underbrace{y p_{x}}_{\substack{\text { Commune } \\
\text { with } \\
\text { y, pf }}} \overbrace{\left[p_{z}, z\right]}^{-i \hbar}+\underbrace{p_{y} x}_{\begin{array}{c}
\text { commute } \\
\text { with } z, p_{z}
\end{array}} \overbrace{\left[z, p_{z}\right]}^{i \hbar}=i \hbar \underbrace{\left(x p_{y}-y p_{x}\right)}_{L_{z}} \\
& =i \hbar L_{z}
\end{aligned}
$$

$$
\left[L_{x}, L_{y}\right]=i \hbar L_{z}
$$

Note that we do not need to do all this work to get two other commutators since we can use cyclic permutation of indices (from definition of cross product):

$$
x \rightarrow y, y \rightarrow z, z \rightarrow x
$$

$$
\begin{aligned}
L_{x} & =y p_{z}-z p_{y} \\
\downarrow & \downarrow \downarrow \downarrow \downarrow \\
L_{y} & =z p_{x}-x p_{z} \\
\downarrow & \downarrow \downarrow \downarrow \downarrow \\
L_{z} & =x p_{y}-y p_{x}
\end{aligned}
$$

$$
\vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

$$
\begin{aligned}
{\left[L_{x}, L_{y}\right] } & =i \hbar L_{z} \\
{\left[L_{y}, L_{z}\right] } & =i \hbar L_{x} \\
{\left[L_{z}, L_{x}\right] } & =i \hbar L_{y}
\end{aligned}
$$

What is the significance of this?
Since $L_{x} L_{y}$, and $L_{z}$ do not commute, they are incompatible observables. Incompatible observables can not have a complete set of common eigenfunction.

$$
\sigma_{L_{x}} \sigma_{L y} \geqslant \frac{\hbar}{2}\left|\left\langle L_{z}\right\rangle\right|
$$

What about the square of the total angular momentum $L^{2}$ ?

$$
\begin{aligned}
& {\left[\vec{L}^{2}, L_{x}\right]=\left[L_{x}^{2} L_{x}\right]+\left[L_{y}^{2} L_{y}^{2} L_{x}\right]+\left[L_{z_{1}}^{2} L_{x}\right]} \\
& =L_{y}\left[L_{y} L_{x}\right]+\underbrace{\left[L_{y} L_{x}\right] L_{y}}_{-i \hbar L_{z}}+L_{z}[\underbrace{L_{z}}_{i \hbar L_{y}} L_{x}]+\underbrace{\left[L_{z_{1}} L_{x}\right.}_{i \hbar L_{y}}] L_{z} \\
& =-i \hbar L_{y} L_{z}-i \hbar L_{z} L_{y}+i \hbar L_{z} L_{y}+i \hbar L_{y} L_{z}=0
\end{aligned}
$$

We used:

$$
[A B, C]=A[B, C]+[A, C] B \text {. }
$$

$$
\left[L^{2}, L_{x}\right]=0 \quad\left[L^{2}, L_{y}\right]=0 \quad\left[L^{2}, L_{z}\right]=0
$$

Class exercise:
(1) Find $\left[L_{z_{1}} L_{+}\right]$and $\left[L_{z}, L_{-}\right]$, where

$$
L_{+}=L_{x}+i L_{y} \text { and } L_{-}=L_{x}-i L_{y} .
$$

(2) Find $\left[L^{2}, L \pm\right]$.

$$
\begin{aligned}
& \text { Solution: } \\
& \left. \pm L_{z}, L_{ \pm}\right]=[\underbrace{\left[L_{z}, L_{y}\right]}_{-i \hbar}=i \hbar L_{x} \pm i L_{y}]=\overbrace{\left[L_{z}, L_{x}\right]}^{i \hbar L_{y}} \\
& = \pm i \cdot i \hbar L_{x}= \pm \hbar L_{x}+i \hbar L_{y} \\
& {\left[L^{2}, L_{ \pm}\right]=\left[L^{2}, L_{x} \pm i L_{y}\right]=0}
\end{aligned}
$$

What are eigenvalues and eigenfunctions of the angular momentum operators?
Since $L_{x}, L_{y}$ and $L_{z}$ do not commute and there are no complete set of common eigenfunctions, we will look for simultaneous eigenfunction of $L^{2}$ and one of the components. We will pick $L_{z}$.

First, we will use algebraic technique to the find the eigenvalues. This technique is very similar to the one we used to find allowed energies of the harmonic oscillator.

Eigenvalue problem:
We are looking for eigenvalues $\lambda$ and $\mu$ :

$$
L^{2} f=\lambda f \quad L_{z} f=\mu f
$$

$f$ is the corresponding eigenfunction.

Step 1
It $f$ is eigenfunction of $L^{2}$, then $L_{ \pm} f$ is also eigenfunction, with the same eigenvalue $\lambda$ :

$$
L^{2}\left(L_{ \pm} f\right)=L_{ \pm}(\underbrace{L^{2} f}_{\lambda f})=L_{ \pm} \lambda f=\lambda\left(L_{ \pm f}\right)
$$

Step 2 Class exercise \#2:
What is $L_{z}\left(L_{ \pm} f\right)$ ? Hint: add and subtract $L_{ \pm} L_{z} f$

$$
\begin{aligned}
& L_{z}\left(L_{ \pm} f\right)=L_{z} L_{ \pm} f-L_{ \pm} L_{z} f+L_{ \pm} L_{z} f \\
& =\underbrace{\left(L_{z} L_{ \pm}-L_{z}\right.}_{ \pm \hbar L_{ \pm}}) f+L_{\mu f}^{L_{z} f}= \\
& = \pm \hbar L_{ \pm} f+L_{ \pm}
\end{aligned}
$$



Therefore, $\left(L_{ \pm} f\right)$ is an eigenfunction of $L_{z}$ with new eigenvalue $\mu \pm \hbar$. We name $L_{+}$"raising" operator since it increases the eigenvalue of $L_{z}$ by $\hbar$ and, $L_{-}$"lowering operator" since it lowers the eigenvalue of $L_{z}$ by $\hbar$.
(Remember $a_{ \pm}$for harmonic oscillator!)

## Step 3 Ladder of angular momentum states.

For each $\lambda$, we now have the "ladder" of states:


If we keep applying $L_{+}$, we have to eventually reach the "top rung" since the $z$-component can not exceed the total. We call the corresponding eigenfunction $f_{t}$ and the corresponding eigenvalue $\ell \hbar$.

$$
L+f_{t}=0
$$

At the "top rung"

$$
\begin{aligned}
& L_{z} f_{t}=\hbar l f_{t} \\
& L^{2} f_{t}=\lambda f_{t}
\end{aligned}
$$

Step 4
We now find this $\lambda$.
To accomplish that, we need to know how to express $L_{ \pm} L_{\mp}$ via $L^{2}$ and $L_{z}$. We will find out why in a moment.

Class exercise \#3:
Prove that

$$
\begin{aligned}
& L_{ \pm} L_{\mp}=\left(L_{x} \pm i L_{y}\right)\left(L_{x} \mp i L_{y}\right) \\
& =L_{x}^{2}+L_{y}^{2} \pm i L_{y} L_{x} \mp i L_{x} L_{y}=L_{x}^{2}+L_{y}^{2} \\
& \mp i \underbrace{\left(L_{x} L_{y}-L_{y} L_{x}\right)=L^{2}-L_{z}^{2} \mp i i \hbar L_{z}}_{\left[L_{x} L_{y}\right]=i \hbar L_{z}} \\
& =L^{2}-L_{z}^{2} \pm \hbar L_{z}
\end{aligned}
$$

Therefore, $L^{2}=L_{ \pm} L_{\mp}+L_{z}{ }^{2} \mp \hbar L_{z}$.

$$
\begin{aligned}
& L^{2} f_{t}=\left(L-L_{+}+L_{z}^{2}+\hbar L_{z}\right) f_{t} \\
& =L-L \not L_{t}^{0}+\underbrace{L_{z}^{2} f_{t}}_{\hbar^{2} l^{2}}+\hbar \underbrace{L_{z} f_{t}}_{\hbar l}=\underbrace{\hbar^{2} l(l+1)}_{=\lambda} f_{t}
\end{aligned}
$$

$$
\lambda=\hbar^{2} \ell(l+1)
$$

$l$ is maximum eigenvalue of $L_{z}$

$$
L_{z} f_{t}=\hbar l f_{t}
$$

Step 5
Now, we note that there must be "bottom rung" for the same reason and

$$
L_{z} f_{b}=\frac{\hbar \bar{l}}{\uparrow_{\text {Lowest eigenvalue of } L_{z}}^{L-f_{b}}{ }^{L} \text { corresponding eigenfunction }} \text { c }
$$

$$
L^{2} f_{b}=\lambda_{\Omega} f_{b} \quad \begin{aligned}
& \text { remember that eigenvalue of } L^{2} \\
& \text { is the same for the entire ladder }
\end{aligned}
$$

Again, we use: $\quad L^{2} f_{b}=\left(L_{+} L_{-}^{0}+L_{z}^{2}-\hbar L_{z}\right) f_{b}$ since $L-f_{b}=0$

$$
\begin{gathered}
=\underbrace{L_{z}^{2} f_{b}}_{\hbar^{2} \bar{l}^{2}}-\underbrace{\hbar \underbrace{}_{z} f_{b}}_{\hbar \bar{l}}=\hbar^{2} l^{2} f_{b}-\hbar^{2} \bar{l} f_{b}=\hbar^{2} \bar{l}(\bar{l}-1) f_{b} \\
L^{2} f_{b}=\underbrace{\hbar^{2} \bar{l}(\bar{l}-1)}_{=\lambda} f_{b} \\
\lambda=\hbar^{2} \bar{l}(\bar{l}-1)
\end{gathered}
$$

Step 6
We now compare results of the previous two steps, where we got $\lambda$ from conditions for bottom and top rungs:

$$
\begin{gathered}
\lambda=\hbar^{2} l(l+1)=\hbar^{2} \bar{l}(\bar{l}-1) \\
\text { top bottom } \\
l(l+1)=\bar{l}(\bar{l}-1) \Rightarrow 7
\end{gathered}
$$

(1) $\bar{\ell}=\ell+1 \rightarrow$ can't be since bottom step of the ladder
or $(2) \quad \bar{\ell}=-\ell \quad$ can not be high

Our results:
We were looking for information about eigenvalues $\lambda$ and $\mu$ :

$$
L^{2} f=\lambda f \quad L_{z} f=\mu f
$$

(1) We found that

$$
\mu=\underset{\substack{\sum_{\text {let's just call this quantity } m} \hbar} L_{z} f=\hbar m f . . . ~ . ~ . ~}{m}
$$

(2) The values of $m$ range from $-l$ to $l$. There are $N$ integer steps between $m=-l$ and $m=l$.

$$
l=-l+N \quad \Rightarrow \quad l=N / 2 \Rightarrow
$$

$l$ and $m$ can be integer or half-integer.
Summary:
Eigenfunction $f_{l}^{m}$ of $L^{2}$ and $L_{z}$ are labeled by $m$ and $l$ :

$$
\begin{aligned}
& L^{2} f_{l}^{m}=\hbar^{2} l(l+1) f_{l}^{m}, \quad L_{z} f_{l}^{m}=\hbar m f_{l}^{m} . \\
& l=0, \frac{1}{2}, 1, \frac{3}{2}, 2, \ldots
\end{aligned}
$$

For a given value of $l$, there are $2 l+1$ values of $m$ : $m=-l,-l+1, \ldots, l-1, l$.

