
Lecture 7

Review. Quantum harmonic oscillator

The ground (lowest) solution of time-independent Schrödinger equation for harmonic
oscillator is:

The possible energies are:

To find all other functions, we can use

The ladder operators:

Raising operator

Lowering operator

Definition of commutator:

Canonical commutation relation
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Exercise 4

Find the first excited state of the harmonic  oscillator.
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Exercise 4

Find the first excited state of the harmonic  oscillator.

Solution:
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L7.P2
Your can also get normalization  algebraically using

see pages 47-48  of the
textbook  for proof

Then,

Therefore, the normalization constant An is

Other useful formulas:

Very useful in  calculating  
averages
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Analytic method

L7.P3

We now solve the Schrödinger equation for  the harmonic oscillator directly

Change variables for convenience

For very large

Approximate solution:

Not normalizable since

Therefore, we look for solutions in the form

   Lecture 7 Page 4    



L7. P4

We look for solution in the form of power series

The coefficient of each power of      must vanish
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L7.P5

Recursion formula:

Problem: not all solutions are normalizable
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L7.P6

We recovered our previous result!

Note: the condition above will terminate either  odd or even power series, the other
must  be zero from the start.

How to generate the wave functions?
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L7.P7

Apart from overall factor (    or     ) these  polynomials are called Hermite polynomials.
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