Lecture 4

The infinite square well
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A particle in this potential is completely free, except at the two ends, where an
infinite force prevents it from escaping.

Let's solve the Schrddinger equation!
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First, we seek stationary states
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We need to solve the time-independent Schrodinger equation
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to find ().
Outside of the well W(X)=0 .

Inside the well, where V= 0, the time-independent Schrédinger equation becomes:
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We introduce éf _@ and wu*-!f,
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Simple harmonic oscillator equation; its general solution is

Yix) = Asin #x + Bcos éx}

where A and B are arbitrary constants that are generally obtained from
boundary conditions.

What are the boundary conditions for ¥(x) 7
(Asadé? botl. Y(x) and d¥ an conh how but where
' dx

Vo 2 o»[? Mo Andt applien,
Conl’iwiiﬂa 0# Y(x) f‘£7ufres Hoat

Boundary

ylo) = yla) =0 |«—

conditions

Now we can find out something about A and B

y(o)= AsSino+ Becos0o = B => |[B=o0

G (a) = Asinba = ot A=p
(trivial sobuton, discard)

or saM&a. —0 =3

/&4: 0 +%x + amw 31T .,

) ) )

/ﬁ:o also ?st $(x) =0 =) discard

I\/(_gaku soduHons 91“/4 M—M«ina new |, Since sinl-0)=-sin(9)
and Sfﬁn can be absorbed [n*I\a A,
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Therefore, the distinct solutions are

h7 .
/@h: ;5 )Wlll\, h=4 2, 3...

and
#7_ k: i nzﬁz #7.
E"\: Am 2ma*

and quantum particle in the infinite square well can not have just any energy. It has to
be one of these special allowed values.

Now, we find A by normalizing Y (x )
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S lAIZSm%xe = IAIZ;%= 4 = [Alz‘—z/
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Global phase carries no significance in quantum mechanics, and we can pick
positive root.

p= %

2. r nic
Therefore, |Y¥n(x) = E Sin (‘Z x)

These solutions look like:
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Excited states

()

Y

carries
lowest energy
It is called ground state.
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The set of functions ¥,(x) has the following properties:
1. They are alternatively even and odd.

2. As you go up in energy, each successive state has one more node (zero-crossing).

3. They are mutually orthogonal, i.e.

S\\(/:(o(,) \{)“(x) JX-‘rO l‘-F mZ h

Also, if m = n ftht(x) ‘/’M (x)dx =

1 ( normalization)

We can combine orthogonality and normalization into single statement

gq’,‘,\ (x) ¢, (x)dx = g,,m
N

Kronecter dedAa
0, “'F m#n
SMV\: {

c‘-l: m=n

/

We say that functions ¥n(¥ are orthonormal.

4. They are complete, in the sense that any other function ‘F(x) can be expressed as
a linear combination of them.

¥ gl . nl
(4\ ‘JC(’L) = Z. CnV,.(x) = /;2—:— ZC*‘S"‘ —Zx)

h=) n=1

Note: the coefficients ¢, may be evaluated using Fourier's trick:

W(’,Jc\‘k,@v() both  sides Di Eq. (1) b? “7”:: (x) and
Cn-l{?rouk

&’ >’
(4nG) f()dx = T cn J456¥0 (1) dx =T Cab0=Gn

n=| h=1
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Ch= g“l‘:(’() Fex)dx

Summary:

Stationary states for an infinite square well are:
_ _o(n Y Imat) £
Z n x)
\\):(’X.JC): {z sin (— ¢
The most general solution is

nic

0 > —((n*ntt, 7—/2,%2){.
Y (xt)= 2 CHES'" 7,:">€
n= 1

How to find C,, ~ for a given initial function ' ( x, 0)?

o = E !ﬂsin(fgx)\V/z,o)ch

using Cp = JNP:[X) QC(I) CIX.

v
[ Cn |~ tells you the probability that a measurement of the energy would yield the value

En.
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