Lecture 4

The infinite square well

$$
V(x)= \begin{cases}0, & \text { if } \quad 0 \leq x \leq a \\ \infty, & \text { otherwise }\end{cases}
$$

A particle in this potential is completely free, except at the two ends, where an infinite force prevents it from escaping.

Let's solve the Schrödinger equation!

$$
i \hbar \frac{\partial \psi(x, t)}{\partial t}=-\frac{\hbar^{2}}{\partial m} \frac{\partial^{2} \psi(x, t)}{\partial x^{2}}+V \psi(x, t)
$$

First, we seek stationary states

$$
\psi(x, t)=\psi(x) e^{-i E t / \hbar}
$$

We need to solve the time-independent Schrödinger equation

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}+V \psi=E \psi
$$

to find $\psi(x)$.
Outside of the well $\psi(x)=0$.
Inside the well, where $V=0$, the time-independent Schrödinger equation becomes:

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}=E \psi \\
& \frac{d^{2} \psi}{d x^{2}}=-\frac{2 m E}{\hbar^{2}} \psi
\end{aligned}
$$

We introduce $k \equiv \frac{\sqrt{2 m E}}{\hbar}$ and write

$$
\frac{d^{2} \psi}{d x^{2}}=-k^{2} \psi \quad(E \geqslant 0)
$$

Simple harmonic oscillator equation; its general solution is

$$
\psi(x)=A \sin k x+B \cos k x
$$

where A and B are arbitrary constants that are generally obtained from boundary conditions.
What are the boundary conditions for $\psi(x)$?
Usually, both $\psi(x)$ and $\frac{d \psi}{d x}$ are continuous, but where $v \rightarrow \infty$ only the first applies.
Continuity of $\psi(x)$ requires that

$$
\psi(0)=\psi(a)=0 \longleftarrow \begin{gathered}
\text { Boundary } \\
\text { conditions }
\end{gathered}
$$

Now we can find out something about A and B

$$
\begin{aligned}
& \psi(0)=A \sin 0+B \cos 0=B \Rightarrow B=0 \\
& \psi(a)=A \sin k a \Rightarrow \text { either } A=0
\end{aligned}
$$

(trivial solution, discard)
or $\sin k a=0 \Rightarrow$

$$
k a=0, \pm \pi, \pm 2 \pi, \pm 3 \pi \ldots
$$

$k=0$ also gives $\psi(x)=0 \Rightarrow$ discard
Negative solutions give nothing new, since $\sin (-\theta)=-\sin (\theta)$ and sign can be absorbed into A.

Therefore, the distinct solutions are

$$
k_{n}=\frac{n \pi}{a} \text {, with } n=1,2,3 \ldots
$$

and

$$
E_{n}=\frac{\hbar^{2} k_{n}^{2}}{2 m}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m a^{2}}
$$

and quantum particle in the infinite square well can not have just any energy. It has to be one of these special allowed values.

Now, we find A by normalizing $\psi(x)$:

$$
\int_{a}^{b}|A|^{2} \sin ^{2} k x d x=|A|^{2} \frac{a}{2}=1 \Rightarrow|A|^{2}=\frac{2}{a}
$$

Global phase carries no significance in quantum mechanics, and we can pick positive root.

$$
A=\sqrt{\frac{2}{a}}
$$

Therefore,

$$
\psi_{n}(x)=\sqrt{\frac{2}{a}} \sin \left(\frac{n \pi}{a} x\right)
$$

These solutions look like:

ψ_{1}
carries
lowest energy

It is called ground state.

The set of functions $\psi_{n}(x)$ has the following properties:

1. They are alternatively even and odd.
2. As you go up in energy, each successive state has one more node (zero-crossing).
3. They are mutually orthogonal, ie.

$$
\int \psi_{m}^{*}(x) \psi_{n}(x) d x=0 \text { if } m \neq n
$$

Also, if $\mathrm{m}=\mathrm{n} \quad \int \psi_{m}^{*}(x) \psi_{m}(x) d x=1 \quad$ (normalization)
We can combine orthogonality and normalization into single statement

Kronecker delta

$$
\delta_{m n}= \begin{cases}0, & \text { if } m \neq n \\ 1, & \text { if } m=n\end{cases}
$$

We say that functions $\psi_{n}(x)$ are orthonormal.
4. They are complete, in the sense that any other function $f(x)$ can be expressed as a linear combination of them.

$$
\text { (1) } \quad f(x)=\sum_{n=1}^{\infty} c_{n} \psi_{n}(x)=\sqrt{\frac{2}{a}} \sum_{n=1}^{\infty} c_{n} \sin \left(\frac{n \pi}{a} x\right) \text {. }
$$

Note: the coefficients c_{n} may be evaluated using Fourier's trick:
multiply both sides of Eq. (1) by $\psi_{m}^{*}(x)$ and integrate

$$
\int \psi_{m}^{*}(x) f(x) d x=\sum_{n=1}^{\infty} c_{n} \int \psi_{m}^{*}(x) \psi_{n}(x) d x=\sum_{n=1}^{\infty} c_{n} \delta_{m n}=c_{m}
$$

$$
c_{n}=\int_{-\infty}^{\infty} \psi_{n}^{*}(x) f(x) d x
$$

Summary:
Stationary states for an infinite square well are:

$$
\Psi_{n}(x, t)=\sqrt{\frac{2}{a}} \sin \left(\frac{n \pi}{a} x\right) e^{-i\left(n^{2} \pi^{2} \hbar^{2} / 2 m a^{2}\right) t}
$$

The most general solution is

$$
\Psi(x, t)=\sum_{n=1}^{\infty} c_{n} \sqrt{\frac{2}{a}} \sin \left(\frac{n \pi}{a} x\right) e^{-i\left(n^{2} \pi^{2} \hbar^{2} / 2 m a^{2}\right) t}
$$

How to find C_{n} for a given initial function $\psi\left(x_{1} 0\right)$?

$$
c_{n}=\sqrt{\frac{2}{a}} \int_{0}^{a} \sin \left(\frac{n \pi}{a} x\right) \psi(x, 0) d x
$$

using

$$
c_{n}=\int \psi_{n}^{*}(x) f(x) d x
$$

$\left|C_{n}\right|^{2}$ tells you the probability that a measurement of the energy would yield the value E_{n}.

$$
\sum_{n=1}^{\infty}\left|c_{n}\right|^{2}=1
$$

