Lecture #26
Review

Postulates of quantum mechanics (1-3)

Postulate 1

The state of a system at any instant of time may be represented by a wave function
Y  which is continuous and differentiable. Specifically, if a system is in the

state Y(r t), the average of any physical observable C relevant he this system

intime t is

ey = j”r*a Y dv

Only normalizable wave functions represent physical states. The set of all square-
integrable functions, on a specified interval,

60 sk at Sl—&('zﬂ:l,( (oo

constitutes a Hilbert space. Wave functions live in Hilbert space.

Postulate 2

To any self-consistently and well-defined observable Q, such as linear momentum,
energy, angular momentum, or a number of particles, there correspond an operator

a such that measurement of Q yields values (call these measured values q) which
are eigenvalues of Q. That is, the values q are those for which the equation

N
Quy=9Y & <ighmvalu ejwufwn/
A
has a solution Y . The function "f is called the eigenfunction of  corresponding

to the eigenvalue q.

Postulate 3
Measurement of the observable Q that yields the value q leaves the system

in the state {4 , where ‘{L is the eigenfunction of Q that corresponds to
the eigenvalue q.
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Generalized statistical interpretation:

If your measure observable Q on a particle in a state Y(xt) you will get one of
the eigenvalues of the hermitian operator Q If the spectrum of Q is discrete, the
probability of getting the eigenvalue 4, associated with orthonormalized
eigenfunction L.(x) is

lea)® . where  Cu= <dnlyy

It the spectrum is continuous, with real eigenvalues q(z) and associated
Dirac-orthonormalized eigenfunctions {,09, the probability of getting a result

in the range dz is
lc(%)lzcli} wheve ¢c(z) = <‘C}\ 7

The wave function "collapses" to the corresponding eigenstate upon measurement.

2 _ A % = L lcnld “ | Discrede
{)C“\ | and Q7 ZN% Spechra m

The uncertainty principle:

‘ 2
2 <
ey eh > (4 <ch D)
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Important differences between classical mechanics and quantum mechanics

1. Superposition Y = A, t by, + c ¥4 €.
2. Measurement

3. Entanglement

Let's consider two-level quantum system:

“V"“"f\*' b\'P'L: a_lo7+L>).'17
0 r
&.)"“ JLS!‘?MJ\'OM for ¢y and ¢4

Example:
lov is Qr)in w',/\\ shale “))
|4y s Srif\ dowm | stak (?>

If we combine two such systems we can build a state
Yy = = (105e10% + 1vely) = L(27 « 1)
2 S

Such state is called maximally "entangled" state since if we measure the first spin
being "up", then the measurement of the second spin will yield the result "up" with 100%

probability:

\{/ll: é (@/]\ N “LJ/>
Ciﬁ WL 3& s resulh =
He wae Anckon Yoo “oollapses’ o
“hi=”M =) e second spin is T widh
[oo"/, Proba]ﬁ&*&,
If we find the first spin to be\L second spin must be J/ as well.

after measurement.

Yap 7 (‘P.(L = U
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Schroédinger equation: summary

The general solution of Schrédinger equation in three dimensions (if V does not depend
on time)

N 3 2'
- ivq»-t-vur H= -5y
a.t 2m
° VBt IE
W(R,x) = Z Can(T) e ,
n
where functions Y ?) are solutions of time-independent Schrddinger equation
Rty 4+ V CHY=EY]
2m "f A '

If potential V is spherically symmetric, i.e. only depends on distance to the origin r,
then the separable solutions are

y (r 9 ¢)= R Y (8 )

N~

where R(r) are solutions of radial equation

d (rz cli) 3 dmr* (V(r\—E) — C(L+1)

(
R de dr +*

e

2 2
with normalization condition g [RI ¢ dr=1
o)
The spherical harmonics are

(2¢41) (6= Im)!  mE  m

™ ( _
) = ¢ P, (c0s0)
Y‘f ) 4 (€+Im])) JW
associated Legendre functions
é:{C-\)M e €= z
1 ™m £0 m= —-e - 1"4 , e
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Summary for radial equation:

Ul = rR()

I Sl S IRV ““')]u - Eu
2m dr? 2 r*

o2

XI\AP’AP:\

Angular momentum

T_'Q [ \'><, L7—L = l'l'\' Lz_
EL)’) L}-} = \_}\- Lx
[ LZ—I LX—) = \‘k L\/ ’LL\C’V

m 2
Eigenfunctions «Fﬁ of L andL, are labeled by m and [:
2 M 2 M il
L f, = hewn s, L%fz :tm’fe.
3

’6: O} iz) i) 5:) Q)u\(E)n\\I l'rvl&g,tf‘ \/‘0‘1&1(/3 —Qr Oflﬁl‘lé\l ahék,'(Ar* mo,me,“l')/w\v)

.y
For a given value of /, there are 2/+1 values of m: m = - Z, - Z* 4, ..., -1, 2.

1)

Elementary particles carry intrinsic angular momentum S in addition to L.
Spin of elementary particles has nothing to do with rotation, does not depend on
coordinates © and yf , and is purely a quantum mechanical phenomena.
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Addition of angular momenta

If you combine any angular momentum dJ+ and J=z you get every

value of angular momentum from lj\ - Jz | to Jl“& :\2 in integér steps:

~ . . d \
d=1g,-d=b e (30 )2)

It does not matter if it is orbital angular momentum or spin.

The combined state | J m™) with total angular momentum j
is a linear combination of the composite states:

—_ C()AJZJ . .
\3“\7 = 2__ M, My M ‘J\W\\7 \‘);_W‘L7
My M Y——

EW\—.V"\.‘fW\),—l
\ C\C\oScl\‘ G-orelovv

CoefL€icnents.
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