Lecture 25

Addition of angular momenta

Ground state of hydrogen: it has one proton with spin $1 / 2$ and one electron with spin $1 / 2$ (orbital angular momentum is zero). What is the total angular momentum $\overrightarrow{\mathfrak{S}}$ of the hydrogen atom?

The z components just add together and quantum number m for the composite system is simply

$$
m=m_{1}+m_{2}
$$

Combination of two spin $1 / 2$ particles can carry a total spin of $s=1$ or $s=0$, depending on whether they occupy the triplet or singlet configuration.

Three states $|s m\rangle$ with spin $s=1, m=1,0,-1$:

$$
\left\{\begin{array}{l}
|11\rangle=\uparrow \uparrow \\
|10\rangle=\frac{1}{\sqrt{2}}(\uparrow \downarrow+\downarrow \uparrow) \\
|1-1\rangle=\downarrow \downarrow
\end{array}\right\} \quad S=1 \quad \begin{aligned}
& \text { This is called a } \\
& \text { triplet configuration. }
\end{aligned}
$$

and one state with $\operatorname{spin} s=0, m=0$:

$$
\left\{|00\rangle=\frac{1}{\sqrt{2}}(\uparrow \downarrow-\downarrow \uparrow)\right\} \quad S=0
$$

This is called a singlet configuration.

How do we prove that it is true?

To prove the above, we need to show that

$$
S^{2}|S M\rangle=S(S+1)|S M\rangle \text {, ie. }
$$

for triplet states

$$
\left.\left.S^{2}\right|_{1} M\right\rangle=2|1 M\rangle \quad \text { since } \quad S=1 \quad[M= \pm 1,0]
$$

and for singlet states

$$
s^{2}|00\rangle=0 \quad \text { since } \quad S=0
$$

This can be shown by direct calculation (see page 186 of the textbook for the proof).

In general, it you combine any angular momentum j_{1} and j_{2} you get every value of angular momentum from $\left|j_{1}-j_{2}\right|$ to $j_{1}+j_{2}$ in integer steps:

$$
j=\left|j_{1}-j_{2}\right|, \ldots,\left(j_{1}+j_{2}\right)
$$

It does not matter if it is orbital angular momentum or spin.
Example:

$$
\begin{aligned}
& j_{1}=\frac{3}{2} \quad j_{2}=3 \Rightarrow \\
& \left|j_{1}-j_{2}\right|=\left|\frac{3}{2}-3\right|=\frac{3}{2} \\
& j_{1}+j_{2}=\frac{3}{2}+3=\frac{9}{2}
\end{aligned}
$$

Total angular momentum j can be $\frac{3}{2}, \frac{5}{2}, \frac{7}{2}$, and $\frac{9}{2}$.

Class exercise \#11
Quarks carry spin $1 / 2$. Two quarks (or actually a quark and an antiquark) bind together to make a meson (such as pion or kaon). Three quarks bind together to make a marion (such as proton or neutron). Assume all quarks are in the ground state so the orbital angular momentum is zero).
(1) What spins are possible for mesons?
(2) What spins are possible for baryons?

Solution:
(1) $S_{1}=\frac{1}{2} \quad S_{2}=\frac{1}{2} \Rightarrow S=0$ or 1 .
(2) $\underbrace{S_{1}=\frac{1}{2} \quad S_{2}=\frac{1}{2}}_{\text {Add these first }} \quad S_{3}=\frac{1}{2}$

$$
S_{12}=0 \text { or } 1
$$

Now add the third spin:

$$
\begin{aligned}
& S_{12}=0 \quad S_{3}=\frac{1}{2} \Rightarrow S=\frac{1}{2} \\
& S_{12}=1 \quad S_{3}=\frac{1}{2} \Rightarrow S=\left|\frac{1}{2}-1\right|, \ldots\left(\frac{1}{2}+1\right) \Rightarrow \\
& S=\frac{1}{2} \text { or } \frac{3}{2}
\end{aligned}
$$

$$
S=\frac{1}{2} \text { or } \frac{3}{2}
$$

The combined state $|j m\rangle$ with total angular momentum j is a linear combination of the composite states:

$$
\begin{array}{r}
\operatorname{ljm\rangle }=\sum_{\substack{m_{1}, m_{2} \\
\left[m=m_{1}+m_{2}\right]}}^{C_{m_{1} m_{2} m}^{j_{1} j_{2} j}}\left|j_{1} m_{1}\right\rangle\left|j_{2} m_{2}\right\rangle \\
\begin{array}{l}
\text { clebsch-Gordon } \\
\text { coefficients. }
\end{array}
\end{array}
$$

Links to the calculators of Clebsch-Gordan coefficients:
http://www.gleet.org.uk/cleb/cgjava.html
http://www.volya.net/vc/vc.php
Let's consider our previous case of hydrogen as an example:
$j_{1}=\frac{1}{2}$ and $j_{2}=\frac{1}{2} \Rightarrow$ total j is 1 or 0.
Our states were:
(1)

$$
\begin{aligned}
& |11\rangle=\uparrow \uparrow \\
& \left.\right|_{\left.j, m_{1}\right\rangle}=\left\langle\frac{1}{2} \frac{1}{2}\right\rangle
\end{aligned}\left|j_{2} m_{2}\right\rangle=\left|\frac{1}{2} \frac{1}{2}\right\rangle
$$

Now we look at the formula above:

$$
\operatorname{ljm\rangle }=\sum_{\substack{m_{1}, m_{2} \\\left[m=m_{1}+m_{2}\right]}} C_{m_{1} m_{2} m}^{j_{1} j_{2} j}\left|j, m_{1}\right\rangle\left|j_{2} m_{2}\right\rangle
$$

and compare

$$
\left.\begin{array}{l}
|11\rangle=\left|\frac{1}{2} \frac{1}{2}\right\rangle\left|\frac{1}{2} \frac{1}{2}\right\rangle \\
\left.|j m\rangle=\left|j, m_{1}\right\rangle j_{2} m_{2}\right\rangle
\end{array}\right\} \Rightarrow C_{\frac{1}{2} \frac{1}{2} 1}^{\frac{1}{2} \frac{1}{2} 1}=1
$$

and all other relevant Clebsch-Gordan coefficients are zero :

$$
\begin{aligned}
& C_{m_{1} m_{2} 1}^{\frac{1}{2} \frac{1}{2}}=0 \\
& m_{1} \neq 1 / 2, \quad m_{2} \neq \frac{1}{2}
\end{aligned}
$$

(2)

$$
|10\rangle=\frac{1}{\sqrt{2}}(\uparrow \downarrow+\downarrow \uparrow)
$$

$$
|10\rangle=\frac{1}{\sqrt{2}}\left|\frac{1}{2} \frac{1}{2}\right\rangle\left|\frac{1}{2}-\frac{1}{2}\right\rangle+\frac{1}{\sqrt{2}}\left|\frac{1}{2}-\frac{1}{2}\right\rangle\left|\frac{1}{2} \frac{1}{2}\right\rangle
$$

Designations: $\begin{array}{r}\text { ljm } \\ \\ \substack{j=1 \\ m \\ m}\end{array}$

$$
\begin{aligned}
& j=1 \\
& m=0
\end{aligned}
$$

$$
j_{1}=\frac{1}{2} \quad m_{1}=\frac{1}{2}
$$

$$
j 2=\frac{1}{2} \quad m_{2}=-\frac{1}{2}
$$

$$
\begin{aligned}
& \left.\left|j_{1} m_{1}>\right| j_{2} m_{2}\right\rangle \\
& j_{1}=\frac{1}{2} \quad m_{1}=-\frac{1}{2} \\
& j_{2}=\frac{1}{2} \quad m_{2}=\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& C_{\frac{1}{2}-\frac{1}{2} 0}^{\frac{1}{2} 1}=\frac{1}{\sqrt{2}} \\
& C_{-\frac{1}{2} \frac{1}{2} 0}^{\frac{1}{2}}=\frac{1}{\sqrt{2}}
\end{aligned}
$$

All other relevant Clebsch-Gordan coefficients are zero.

$$
C_{m_{1} m_{2} 0}^{\frac{1}{2} \frac{1}{2} 1}=0 \quad \text { for all other } m_{1} \text { and } m_{2}
$$

Class exercise \#12

The electron in a hydrogen atom occupies the combined spin an position state:

$$
\begin{aligned}
& m_{l}^{l=0} \quad m_{s}=\frac{1}{2} \quad \begin{array}{l}
l=1
\end{array} \quad m_{l}=-\frac{1}{2}
\end{aligned}
$$

Note that $m_{l}+m_{S}=\frac{1}{2}$ in both cases
(a) If you measure the orbital angular momentum squared L^{2}, what values might your get and what is the probability of each?
(b) Same for z component of the orbital angular momentum,L_{z}.
(c) Same for the spin angular momentum squared S^{2}.
(d) Same for z component of the spin angular momentum S_{z}. Let $\vec{J}=\vec{L}+\vec{S}$ be the total angular momentum.
(e) If you measure the total angular momentum squared J^{2}, what values might your get and what is the probability of each?

Clebsch-Gordan coefficients

$\mathrm{j}_{1}=1, \mathrm{j}_{2}=1 / 2$			
$\mathrm{m}=3 / 2$	j=		
		3/2	
$\begin{aligned} & m_{1}, m_{2}= \\ & m=1 / 2 \end{aligned}$	1,1/2	1	
	j=		
		3/2	1/2
$\mathrm{m}_{1}, \mathrm{~m}_{2}=$	1,-1/2	$\sqrt{\frac{1}{3}}$	$\sqrt{\frac{2}{3}}$
	0,1/2	$\sqrt{\frac{2}{3}}$	$-\sqrt{\frac{1}{3}}$

Hint: this formula is also true

$$
\left|j_{1} m_{1}\right\rangle\left|j_{2} m_{2}\right\rangle=\sum_{j} C_{m_{1} m_{2} m}^{j_{1} j_{2} j}|j m\rangle
$$

Use it to represent ψ as a linear superposition of eigenstates $\operatorname{lj} m \mathrm{l}$.

Class exercise \#12
The electron in a hydrogen atom occupies the combined spin an position state:

$$
\begin{aligned}
& \psi=R_{n=2}^{R_{21}}(\sqrt{1 / 3} \underbrace{Y_{1}^{0} \Psi_{+}}_{l=1}+\sqrt{2 / 3} \underbrace{Y_{l}}_{l=1} \underbrace{Y_{l}}_{l=\frac{1}{2}} \underbrace{Y_{S}}_{l=1}) \\
& m_{l}=0 \quad m_{s}=\frac{1}{2} \\
& m_{e}=1 \\
& m_{s}=-\frac{1}{2}
\end{aligned}
$$

Note that $m_{l}+m_{s}=\frac{1}{2}$ in both cases
(a) If you measure the orbital angular momentum squared L^{2}, what values might your get and what is the probability of each?

$$
l=1 \quad L^{2} \psi=l(l+1) \hbar^{2} \psi \quad \Rightarrow
$$

You get $\hbar^{2} l(l+1)=2 \hbar^{2} \quad$ with probability $P=1$ (100\%).
(b) Same for z component of the orbital angular momentum, L_{z}.

$$
L_{z} \psi=\hbar m_{e} \psi
$$

Possible values of $m_{l}: m_{l}=0$ or 1 .

$$
\begin{aligned}
& p=\left(\sqrt{\frac{1}{3}}\right)^{2}=\frac{1}{3} \quad \text { for } \quad m_{l}=0 \\
& p=\left(\sqrt{\frac{2}{3}}\right)^{2}=\frac{2}{3} \quad \text { for } \quad m_{l}=1
\end{aligned}
$$

(c) Same for the spin angular momentum squared S^{2}.

$$
s^{2} \psi=\hbar^{2} s(s+1) \psi \quad s=\frac{1}{2} \Rightarrow \text { you get } \frac{3}{4} \hbar^{2} \text { with } p=1
$$

(d) Same for z component of the spin angular momentum S_{z}.

$$
\begin{aligned}
& S_{z} \psi=\hbar m_{s} \psi \quad m_{s}=\frac{1}{2} \text { and }-\frac{1}{2} \\
& P=1 / 3 \text { for } m_{s}=\frac{1}{2} ; \quad P=2 / 3 \text { for } m_{s}=-\frac{1}{2}
\end{aligned}
$$

(e) If you measure the total angular momentum squared \boldsymbol{J}^{2}, what values might your get and what is the probability of each?

Clebsch-Gordan coefficients

Hint: this formula is also true

$$
\left|j_{1} m_{1}\right\rangle\left|j_{2} m_{2}\right\rangle=\sum_{j} C_{m_{1} m_{2} m}^{j_{1} j_{2} j}|j m\rangle
$$

Use it to represent Ψ as a linear superposition of eigenstates limp.

$$
\begin{aligned}
& \psi=R_{21}(\sqrt{1 / 3} \underbrace{Y_{1}^{0}}_{\left|e m_{l}\right\rangle\left|s m_{s}\right\rangle} \underbrace{\psi_{+}}_{\left|m_{l}\right\rangle\left|s m_{s}\right\rangle}+\sqrt{2 / 3} \underbrace{Y_{1}^{\prime}}_{\mid} \underbrace{\chi_{-}}_{-}) \\
& \left.\left|\begin{array}{l}
\downarrow \\
|10\rangle\left|\frac{1}{2} \frac{1}{2}\right\rangle
\end{array}\right| 11\right\rangle\left|\frac{1}{2}-\frac{1}{2}\right\rangle \\
& \begin{array}{l}
j_{1} \equiv l \\
j_{2} \equiv S
\end{array} \quad\left|j_{1} m_{1}\right\rangle\left|j_{2} m_{2}\right\rangle=\sum_{j} C_{m_{1} m_{2} m}^{j_{1} j_{2} j}|j m\rangle \\
& \underset{j=j}{ }\left|\ell m_{\ell}\right\rangle\left|s m_{s}\right\rangle=\sum_{j} C_{m_{l} m_{s} m_{j}}^{\ell_{s}}|j m\rangle \quad m=m_{l}+m_{s}
\end{aligned}
$$

What possible values of j can we have?

$$
l=1 \quad s=\frac{1}{2} \Rightarrow j=l-s \text { an } l+s \Rightarrow j=\frac{1}{2} \text { and } \frac{3}{2}
$$

First, we need to express $|10\rangle\left\langle\frac{1}{2} \frac{1}{2}\right\rangle$ via $\langle j \mathrm{jm}\rangle$:

$$
|10\rangle\left|\frac{1}{2} \frac{1}{2}\right\rangle=C_{\substack{l \\ 1 \left\lvert\, \frac{1}{2} \frac{1}{2}\right.}}^{\substack{l \\ 1 \frac{1}{2} \frac{1}{2}}}\left|\frac{1}{2} \frac{1}{2}\right\rangle m_{l}^{|j m\rangle}+C_{0 \frac{1}{2} \frac{1}{2}}^{1 \frac{1}{2} \frac{3}{2}}\left|\frac{3}{2} \frac{1}{2}\right\rangle
$$

need: Clebsch-Gordon coefficients:

Look in this table:

$$
|10\rangle\left|\frac{1}{2} \frac{1}{2}\right\rangle=-\frac{1}{\sqrt{3}}\left|\frac{1}{2} \frac{1}{2}\right\rangle+\sqrt{\frac{2}{3}}\left|\frac{3}{2} \frac{1}{2}\right\rangle
$$

In the same way,

$$
|11\rangle\left|\frac{1}{2}-\frac{1}{2}\right\rangle=C_{1-\frac{1}{2} \frac{1}{2}}^{1 \frac{1}{2} \frac{1}{2}}\left|\frac{1}{2} \frac{1}{2}\right\rangle+C_{1-\frac{1}{2} \frac{1}{2}}^{1 \frac{1}{2} \frac{3}{2}}\left|\frac{3}{2} \frac{1}{2}\right\rangle
$$

(Take coefficients from upper row of the table).

$$
=\sqrt{\frac{2}{3}}\left|\frac{1}{2} \frac{1}{2}\right\rangle+\sqrt{\frac{1}{3}}\left|\frac{3}{2} \frac{1}{2}\right\rangle
$$

$$
\begin{aligned}
& \psi=R_{21}(\sqrt{1 / 3} \underbrace{Y_{1}^{0}}_{\left|e m_{e}\right\rangle\left|s m_{s}\right\rangle} \underbrace{\chi_{+}}_{\left|e m_{e}\right\rangle\left|s m_{s}\right\rangle}+\sqrt{2 / 3} \underbrace{Y_{1}^{\prime}}_{\mid} \underbrace{\chi_{-}}_{-}) \\
& \left\lvert\, \begin{array}{l}
\downarrow \\
10\rangle\left|\frac{1}{2} \frac{1}{2}\right\rangle \quad|11\rangle\left|\frac{1}{2}-\frac{1}{2}\right\rangle
\end{array}\right. \\
& \left.=R_{21}\left(\frac{1}{\sqrt{3}}|10\rangle\left|\frac{1}{2} \frac{1}{2}\right\rangle+\sqrt{\frac{2}{3}}|117| \frac{1}{2}-\frac{1}{2}\right\rangle\right)
\end{aligned}
$$

\uparrow
plug in from previous page

$$
\begin{aligned}
& \psi=R_{21}\left\{\frac{1}{\sqrt{3}}\left(\sqrt{\frac{2}{3}}\left|\frac{3}{2} \frac{1}{2}\right\rangle-\frac{1}{\sqrt{3}}\left|\frac{1}{2} \frac{1}{2}\right\rangle\right)\right. \\
& \left.+\sqrt{\frac{2}{3}}\left(\frac{1}{\sqrt{3}}\left|\frac{3}{2} \frac{1}{2}\right\rangle+\sqrt{\frac{2}{3}}\left|\frac{1}{2} \frac{1}{2}\right\rangle\right)\right\} \\
& =R_{21}(\frac{2 \sqrt{2}}{3} \underbrace{\left|\frac{3}{2} \frac{1}{2}\right\rangle}_{|j m\rangle}+\frac{1}{3}\left|\frac{1}{2} \frac{1}{2}\right\rangle) \\
& |j m\rangle
\end{aligned}
$$

$j=\frac{3}{2}: P=\left|\frac{2 \sqrt{2}}{3}\right|^{2}=\frac{8}{9}$ to get $j(j+1) \hbar^{2}=\frac{15}{4} \hbar^{2}$
$j=\frac{1}{2}: P=\left|\frac{1}{3}\right|^{2}=\frac{1}{9}$ to get $j(j+1) \hbar^{2}=\frac{3}{4} \hbar^{2}$
since $\quad J^{2}|j m\rangle=j(j+1) \hbar^{2}|j m\rangle$

