Lecture 24

Stern-Gerlach experiment, computer simulation.

http://phet.colorado.edu/new/simulations/sims.php?sim=SternGerlach ExperimentDuring

Results of the previous lecture:

$$S_{z}: \quad \text{eigenfunctions} \begin{cases} \chi_{+} = \begin{pmatrix} i \\ o \end{pmatrix} \\ \chi_{-} = \begin{pmatrix} 0 \\ i \end{pmatrix} \quad \text{eigenvalues} \quad \begin{cases} +\frac{t}{2} & (\text{spin upf}) \\ -\frac{t}{2} & (\text{spin down}) \end{cases}$$

If your measure S_2 for the general spin state $\chi = a \begin{pmatrix} 1 \\ 0 \end{pmatrix} + b \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ your get $\frac{1}{2}$ with probability $|a|^2$, and $-\frac{1}{2}$ with probability $|b|^2$. S_x : eigenfunctions $\begin{cases} \chi^{(x)}_{+} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ eigenvalues $\begin{cases} +\frac{1}{2} \\ -\frac{1}{2} \end{cases}$

The general state above $\chi = a \begin{pmatrix} i \\ o \end{pmatrix} + b \begin{pmatrix} o \\ i \end{pmatrix}$

can be written in terms of eigenfunctions of $S_{\mathbf{x}}$ as

$$\chi = \frac{a+b}{\sqrt{2}} \chi_{+}^{(x)} + \frac{a-b}{\sqrt{2}} \chi_{-}^{(x)}$$

Therefore, if you measure S_x on this state, you get $\frac{1}{2}$ with probability $\frac{|\alpha+b|^2}{2}$ and $-\frac{1}{2}$ with probability $\frac{|\alpha-b|^2}{2}$.

Remember that after measurement the wave function "collapses" to the eigenfunction that corresponds to the eigenvalue that your got.

Simulation 1

1 magnet, initial state + 2

What results do we get for S_{2} measurement?

Here, eigenvalue $\frac{1}{2}$ is "up" and eigenvalue $\frac{1}{2}$ corresponds to "down".

Our initial state: $\gamma = \gamma_{+} = \binom{1}{6}$ [for +2] =? a=1b=0

and we get "up" with 100% probability. Our wave function then stays to be \not ₊ since it is already in the eigenstate corresponding to result "up".

Simulation 2

1 magnet, initial state +x

What result do we get for S_{a} measurement?

Therefore, we get result "up" with 50% probability and result "down" with 50% probability. Our spin state after measurement is γ_+ if we got result "up" and γ_- if we got result "down".

Note: we get the same results if our initial spin state was "random xz".

Simulation 3

3 magnets with orientations z, x, and z.

Initial spin state: random xz.

Magnet 1 only lets +z component through, magnet 2 only lets +x component through.

Question: what results do we get after the third magnet?

Do we just get + z since magnet 1 does not let -z through or do we still get both +z and -z? If so, with what probabilities?

(1) Our state after the first magnet is
$$\gamma = \gamma_{+} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 since

we only allow "up" states through. Remember, if we made a measurement of S_2 and got result "up" (+z), then the wave function collapses to the corresponding eigenfunction χ_+ .

(2) From our previous lecture, we can write any state $\chi = \alpha \chi_{+} + b \chi_{-}$

as
$$\chi = \frac{a+b}{\sqrt{2}} \chi_{+}^{(x)} + \frac{a-b}{\sqrt{2}} \chi_{-}^{(x)}$$
.

We have $\chi = \chi_{+} = 7$ a = 1 and b = 0 = 7 $\chi = \frac{1}{\sqrt{2}} \chi_{+}^{(x)} + \frac{1}{\sqrt{2}} \chi_{-}^{(x)}$.

We can also prove it just by algebraic manipulations

$$X = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1+1 \\ 1-1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 \\ -1 \end{pmatrix} =$$
$$= \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \frac{1}{\sqrt{2}} \chi_{+}^{(x)} + \frac{1}{\sqrt{2}} \chi_{-}^{(x)}$$

$$= \frac{1}{\sqrt{2}} \chi_{+}^{(x)} + \frac{1}{\sqrt{2}} \chi_{-}^{(x)}$$

L24.P4

If we make a measurement of $S_{\mathbf{x}}$ on our state

$$\chi = \begin{pmatrix} 1 \\ \sqrt{2} \end{pmatrix} \chi^{(x)} + \begin{pmatrix} 1 \\ \sqrt{2} \end{pmatrix} \chi^{(x)} - \\ \uparrow & "up" & \uparrow & down" \\ \swarrow & \beta \end{pmatrix}$$

we get result "up" with probability 50% [$|_{\mathcal{A}}|^2 = \frac{1}{2}$] and result "down" with probability 50% [$|_{\mathcal{A}}|^2 = \frac{1}{2}$].

Now, magnet 2 only lets "up" spins through, so our wave function after magnet 2 is

$$\chi = \chi_{+}^{(x)} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

(3) Now we can answer our question: what happens if we measure S_2 again with our third magnet?

$$\chi = \frac{1}{r_2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{r_2} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \frac{1}{r_2} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ r_2 \end{pmatrix} \chi + \begin{pmatrix} 1 \\ r_2 \end{pmatrix} \chi - \frac{1}{r_2} \chi - \frac{1}{r_2} \chi + \frac{1}{r_2} \chi - \frac{1}{r_2} \chi - \frac{1}{r_2} \chi + \frac{1}{r_2} \chi - \frac{1}{r_2}$$

Therefore, we get results "up" (+z) and "down" (-z) with equal 50% probabilities !

THE END!

L 24.P5

Addition of angular momenta

Let's go back to ground state of hydrogen: it has one proton with spin $\frac{1}{2}$ and one electron with spin $\frac{1}{2}$ (orbital angular momentum is zero). What is the total angular momentum $\frac{1}{3}$ of the hydrogen atom?

$$\vec{S} = \vec{S}_{1} + \vec{S}_{2}$$
Total spin
Electron's spin, acts only
on electron's spin states

$$S_{2} \not\chi_{1} \chi_{2} = \left(S_{2}^{(1)} + S_{2}^{(2)}\right) \chi_{1} \chi_{2} =$$
electron's
proton's
spin state

$$= \left(S_{4}^{(1)} \chi_{1}\right) \chi_{2} + \chi_{1} \left(S_{2}^{(2)} \chi_{2}\right) = \hbar m_{1} \chi_{1} \chi_{2} + \hbar m_{2} \chi_{1} \chi_{2}$$

$$= \hbar (m_{1} + m_{2}) \chi_{1} \chi_{2}$$

Therefore, the z components just add together and quantum number m for the composite system is simply

$$m = m_1 + m_2$$

There are four possible combinations:

$$m_{1} = \frac{1}{2} \quad m_{2} = \frac{1}{2} \qquad \text{if} \qquad m = 1$$

$$m_{1} = \frac{1}{2} \quad m_{2} = -\frac{1}{2} \qquad \text{if} \qquad m = 0$$

$$m_{1} = -\frac{1}{2} \quad m_{2} = -\frac{1}{2} \qquad \text{if} \qquad m = 0$$

$$m_{1} = -\frac{1}{2} \quad m_{2} = -\frac{1}{2} \qquad \text{if} \qquad m = -1$$

(first arrow corresponds to the electron spin and second arrow corresponds to the nuclear spin) .

L24.P6

Well, it appears that we have an extra state!

Let's apply lowering operator to state $\uparrow\uparrow$ to sort this out \cdot

$$S_{-} | sm7 = t \sqrt{s(s+1)} - m(m-1) | s m-1 \rangle$$

$$S_{-}^{(1)} 1 = S_{-}^{(1)} | \frac{1}{2} \frac{1}{2} 7 = t \sqrt{\frac{1}{2} \cdot \frac{3}{2} - \frac{1}{2} (\frac{1}{2} - 1)} | \frac{1}{2} - \frac{1}{2} 7 = t \sqrt{\frac{1}{2} \cdot \frac{3}{2} - \frac{1}{2} (\frac{1}{2} - 1)} | \frac{1}{2} - \frac{1}{2} 7 = t \sqrt{\frac{1}{2} \cdot \frac{3}{2} - \frac{1}{2} (\frac{1}{2} - 1)} | \frac{1}{2} - \frac{1}{2} 7 = t \sqrt{\frac{1}{2} \cdot \frac{3}{2} - \frac{1}{2} (\frac{1}{2} - 1)} | \frac{1}{2} - \frac{1}{2} 7 = t \sqrt{\frac{1}{2} \cdot \frac{3}{2} - \frac{1}{2} (\frac{1}{2} - 1)} | \frac{1}{2} - \frac{1}{2} 7 = t \sqrt{\frac{1}{2} \cdot \frac{3}{2} - \frac{1}{2} (\frac{1}{2} - 1)} | \frac{1}{2} - \frac{1}{2} 7 = t \sqrt{\frac{1}{2} \cdot \frac{3}{2} - \frac{1}{2} (\frac{1}{2} - 1)} | \frac{1}{2} - \frac{1}{2} 7 = t \sqrt{\frac{1}{2} \cdot \frac{3}{2} - \frac{1}{2} (\frac{1}{2} - 1)} | \frac{1}{2} - \frac{1}{2} 7 = t \sqrt{\frac{1}{2} \cdot \frac{3}{2} - \frac{1}{2} (\frac{1}{2} - 1)} | \frac{1}{2} - \frac{1}{2} 7 = t \sqrt{\frac{1}{2} \cdot \frac{3}{2} - \frac{1}{2} (\frac{1}{2} - 1)} | \frac{1}{2} - \frac{1}{2} 7 = t \sqrt{\frac{1}{2} \cdot \frac{3}{2} - \frac{1}{2} (\frac{1}{2} - 1)} | \frac{1}{2} - \frac{1}{2} 7 = t \sqrt{\frac{1}{2} \cdot \frac{3}{2} - \frac{1}{2} (\frac{1}{2} - 1)} | \frac{1}{2} - \frac{1}{2} 7 = t \sqrt{\frac{1}{2} \cdot \frac{3}{2} - \frac{1}{2} (\frac{1}{2} - 1)} | \frac{1}{2} - \frac{1}{2} 7 = t \sqrt{\frac{1}{2} \cdot \frac{1}{2} - \frac{1}{2} -$$

 $S_{-}(\uparrow\uparrow) = \left(S_{-}^{(1)} + S_{-}^{(2)}\right)\uparrow\uparrow$ = $\left(S_{-}^{(1)}\uparrow\right)\uparrow + \uparrow\left(S_{-}^{(2)}\uparrow\right) = t_{+}\downarrow\uparrow + t_{+}\uparrow\downarrow = t_{+}(\downarrow\uparrow+\uparrow\downarrow)$ (Note: normalization is not preserved here).

So we can sort out four states as follows:

Three states $s m \gamma$ with spin s = 1, m = 1, 0, -1:

$$\begin{cases} | 11 \rangle = \uparrow \uparrow \\ | 10 \rangle = \frac{1}{2} (\uparrow \downarrow + \downarrow \uparrow) \\ | 1-1 \rangle = \downarrow \downarrow \end{cases}$$
 S=1 This is called a **triplet** configuration.

and one state with spin s = 0, m = 0:

$$\begin{cases} 1007 = \frac{1}{\sqrt{2}}(71 - 17) \\ \end{bmatrix} \quad S = 0 \qquad \text{This is called a} \\ \text{singlet configuration.} \end{cases}$$

Class exercise:

(1) Apply lowering operator S_{-} to state 107, what do you get?

$$S_{-}^{(1)} \uparrow = t_{+} \downarrow (from previous page)$$

$$S_{+}^{(1)} \uparrow = 0$$

(2) Apply raising and lowering operators S_{\pm} to 1007 state, what do you get?

$$\begin{split} S_{-} \left[007 = S_{-} \frac{1}{\sqrt{2}} \left(\uparrow \downarrow - \downarrow \uparrow \right) \right] &= \\ &= \frac{1}{\sqrt{2}} \left(S_{-}^{(1)} \uparrow \right) \downarrow + \frac{1}{\sqrt{2}} \uparrow \left(S_{-}^{(2)} \uparrow \right) \\ &- \frac{1}{\sqrt{2}} \left(S_{-}^{(1)} \uparrow \right) \uparrow - \frac{1}{\sqrt{2}} \downarrow \left(S_{-}^{(2)} \uparrow \right) \right] &= \frac{1}{\sqrt{2}} \ddagger \downarrow \downarrow - \frac{1}{\sqrt{2}} \ddagger \downarrow \downarrow = 0 \\ S_{+}^{(1)} \downarrow &= S_{+}^{(1)} \left| \frac{1}{2} - \frac{1}{2} \right| = \sqrt{\frac{1}{2} \cdot \frac{3}{2} - \left(-\frac{1}{2} \right) \left(-\frac{1}{2} + 1 \right)} \ddagger \left| \frac{1}{2} \frac{1}{2} \right|_{2} = \ddagger \uparrow \\ S_{+} \left| 00 \right\rangle &= \left(S_{+}^{(1)} + S_{+}^{(2)} \right) \left(\uparrow \downarrow - \downarrow \uparrow \right) \\ &= \frac{1}{\sqrt{2}} \left(S_{+}^{(1)} \uparrow \right) \uparrow + \frac{1}{\sqrt{2}} \uparrow \left(S_{+}^{(2)} \downarrow \right) - \frac{1}{\sqrt{2}} \left(S_{+}^{(1)} \downarrow \right) \uparrow - \frac{1}{\sqrt{2}} \downarrow \left(S_{+}^{(2)} \uparrow \right) \\ &= \frac{1}{\sqrt{2}} \ddagger \uparrow \uparrow - \frac{1}{\sqrt{2}} \ddagger \uparrow \uparrow = \underline{0} \end{split}$$

Summary: Combination of two spin $\frac{1}{2}$ particles can carry a total spin of s = 1 or s = 0, depending on whether they occupy the triplet or singlet configuration.