Lecture 24
Stern-Gerlach experiment, computer simulation.
http://phet.colorado.edu/new/simulations/sims.php?sim=SternGerlach ExperimentDuring
Results of the previous lecture:

If your measure S_{z} for the general spin state $x=a\binom{1}{0}+b\binom{0}{1}$ your get $\frac{\hbar / 2}{}$ with probability $|a|^{2}$, and $-\hbar / 2$ with probability $|b|^{2}$.

$$
S_{x}: \quad \text { eigenfunction }\left\{\begin{array}{l}
x_{+}^{(x)}=\frac{1}{\sqrt{2}}\binom{1}{1} \text { eigenvalues }\left\{\begin{array} { l }
{ + \hbar / 2 } \\
{ x _ { - } ^ { (x) } = \frac { 1 } { \sqrt { 2 } } (\begin{array} { c }
{ 1 } \\
{ - 1 }
\end{array}) }
\end{array} \left\{\begin{array}{l}
-\hbar / 2
\end{array} \text { (} \quad\right.\right. \text {, }
\end{array}\right.
$$

The general state above $x=a\binom{1}{0}+b\binom{0}{1}$ can be written in terms of eigenfunction of S_{x} as

$$
x=\frac{a+b}{\sqrt{2}} x^{(x)}+\frac{a-b}{\sqrt{2}} x_{-}^{(x)}
$$

Therefore, if you measure S_{x} on this state, you get $\frac{\hbar}{2}$ with probability $\frac{|a+b|^{2}}{2}$ and $-\frac{\hbar}{2}$ with probability $\frac{|a-b|^{2}}{2}$.

Remember that after measurement the wave function "collapses" to the eigenfunction that corresponds to the eigenvalue that your got.

Simulation 1

1 magnet, initial state $+z$
What results do we get for S_{z} measurement?
Here, eigenvalue $\hbar / 2$ is "up" and eigenvalue $-\hbar / 2$ corresponds to "down".
Our initial state: $x=x_{+}=\binom{1}{0} \quad[$ for $+z] \Rightarrow \begin{aligned} & a=1 \\ & b=0\end{aligned}$
and we get "up" with 100% probability. Our wave function then stays to be χ_{+}since it is already in the eigenstate corresponding to result "up".

Simulation 2

1 magnet, initial state $+x$

What result do we get for S_{z} measurement?

Our initial state: $x=X_{+}^{(x)}[$ for $+x] \Rightarrow$

Therefore, we get result "up" with 50\% probability and result "down" with 50\% probability. Our spin state after measurement is χ_{+}if we got result "up" and χ_{-} if we got result "down".

Note: we get the same results if our initial spin state was "random cz".

Simulation 3

3 magnets with orientations z, x, and z .
Initial spin state: random cz.
Magnet 1 only lets $+z$ component through, magnet 2 only lets $+x$ component through.

Question: what results do we get after the third magnet?

Do we just get $+z$ since magnet 1 does not let $-z$ through or do we still get both $+z$ and $-z$? If so, with what probabilities?
(1) Our state after the first magnet is $\chi=\chi_{+}=\binom{1}{0}$ since we only allow "up" states through. Remember, if we made a measurement of S_{z} and got result "up" (+z), then the wave function collapses to the corresponding eigenfunction χ_{+}.
(2) From our previous lecture, we can write any state $x=a y_{+}+b x_{-}$ as $x=\frac{a+b}{\sqrt{2}} x^{(x)}+\frac{a-b}{\sqrt{2}} x^{(x)}$.

We have $x=x+\Rightarrow a=1$ and $b=0 \Rightarrow$

$$
x=\frac{1}{\sqrt{2}} x^{(x)}+\frac{1}{\sqrt{2}} x^{(x)}-
$$

We can also prove it just by algebraic manipulations

$$
\begin{aligned}
& x=\binom{1}{0}=\frac{1}{2}\left(\begin{array}{c}
1+1 \\
1
\end{array}-1\right)=\frac{1}{2}\binom{1}{1}+\frac{1}{2}\binom{1}{-1}= \\
& =\frac{1}{\sqrt{2}} \underbrace{\frac{1}{\sqrt{2}}\binom{1}{1}}_{x^{(x)}}+\frac{1}{\sqrt{2}} \underbrace{\frac{1}{\sqrt{2}}\binom{1}{-1}}_{x^{(x)}}=\frac{1}{\sqrt{2}} x^{(x)}+\frac{1}{\sqrt{2}} x^{(x)}-Q \in D .
\end{aligned}
$$

If we make a measurement of S_{x} on our state
we get result "up" with probability $50 \%\left[|\alpha|^{2}=\frac{1}{2}\right]$ and result "down" with probability $50 \%\left[|\beta|^{2}=\frac{1}{2}\right]$.
Now, magnet 2 only lets "up" spins through, so our wave function after magnet 2 is

$$
x=x^{(x)}=\frac{1}{\sqrt{2}}\binom{1}{1}
$$

(3) Now we can answer our question: what happens if we measure S_{z} again with our third magnet?

$$
\begin{aligned}
& |a|^{2}=\frac{1}{2} \quad \text { "up" } \\
& |b|^{2}=1 / 2 \text { "down" }
\end{aligned}
$$

Therefore, we get results "up" (+z) and "down" (-z) with equal 50\% probabilities !

THE END!

L 24.P5

Addition of angular momenta

Let's go back to ground state of hydrogen: it has one proton with spin $1 / 2$ and one electron with spin $1 / 2$ (orbital angular momentum is zero). What is the total angular momentum $\overrightarrow{\mathfrak{S}}$ of the hydrogen atom?

$S_{z} x_{1} x_{2}=\left(S_{z}^{(1)}+S_{z}^{(2)}\right) x_{1} x_{2}=$
electron's
spin state proton's
spin state

$$
\begin{aligned}
& =\left(s_{z}^{(1)} x_{1}\right) x_{2}+x_{1}\left(s_{z}^{(2)} x_{2}\right)=\hbar m_{1} x_{1} x_{2}+\hbar m_{2} y_{1} y_{2} \\
& =\hbar\left(m_{1}+m_{2}\right) x_{1} y_{2}
\end{aligned}
$$

Therefore, the z components just add together and quantum number m for the composite system is simply

$$
m=m_{1}+m_{2} .
$$

There are four possible combinations:

$$
\begin{array}{lll}
m_{1}=\frac{1}{2} & m_{2}=\frac{1}{2} & \uparrow \uparrow \\
m_{1}=\frac{1}{2} & m_{2}=-\frac{1}{2} & \uparrow \downarrow \\
m_{1}=-\frac{1}{2} & m_{2}=-\frac{1}{2} & \downarrow \uparrow \\
m_{1}=-\frac{1}{2} & m_{2}=-\frac{1}{2} & \downarrow \downarrow \\
m=0 \\
m=-1
\end{array}
$$

(first arrow corresponds to the electron spin and second arrow corresponds to the nuclear spin).

Well, it appears that we have an extra state!
Let's apply lowering operator to state $\uparrow \uparrow$ to sort this out :

$$
S_{-}|s m\rangle=\hbar \sqrt{s(s+1)-m(m-1)}|s m-1\rangle
$$

$S_{-}^{(1)} \uparrow=S_{-}^{(1)}\left|\frac{1}{2} \frac{1}{2}\right\rangle=\hbar \sqrt{\frac{1}{2} \cdot \frac{3}{2}-\frac{1}{2}\left(\frac{1}{2}-1\right)}\left|\frac{1}{2}-\frac{1}{2}\right\rangle=\hbar \downarrow$

$$
\begin{gathered}
\text { 个 } \\
\text { state with } \\
s=1 / 2, m=1 / 2
\end{gathered}
$$

state with

$$
s=\frac{1}{2} \quad m=-\frac{1}{2}
$$

$$
\begin{aligned}
& S_{-}(\uparrow \uparrow)=\left(S_{-}^{(1)}+S_{-}^{(2)}\right) \uparrow \uparrow \\
& =\left(S_{-}^{(1)} \uparrow\right) \uparrow+\uparrow\left(S_{-}^{(2)} \uparrow\right)=\hbar \downarrow \uparrow+\hbar \uparrow \downarrow=\hbar(\downarrow \uparrow+\uparrow \downarrow)
\end{aligned}
$$

(Note: normalization is not preserved here).
So we can sort out four states as follows:
Three states $|s m\rangle$ with spin $s=1, m=1,0,-1$:

$$
\left\{\begin{array}{l}
|11\rangle=\uparrow \uparrow \\
|10\rangle=\frac{1}{\sqrt{2}}(\uparrow \downarrow+\downarrow \uparrow) \\
|1-1\rangle=\downarrow \downarrow
\end{array}\right\} S=1 \quad \begin{aligned}
& \text { This is called a } \\
& \text { triplet configuration. }
\end{aligned}
$$

and one state with spin $s=0, m=0$:

$$
\left\{|00\rangle=\frac{1}{\sqrt{2}}(\uparrow \downarrow-\downarrow \uparrow)\right\} \quad S=0
$$

This is called a singlet configuration.

Class exercise:
(1) Apply lowering operator $S_{\text {_ }}$ to state $|10\rangle$, what do you get?

$$
\begin{aligned}
& S_{-}^{(1)} \uparrow=\hbar \downarrow \text { (from previous page) } \\
& S_{+}^{(1)} \uparrow=0
\end{aligned}
$$

$$
\begin{aligned}
& S_{-}|10\rangle=\left(S_{-}^{(1)}+S_{-}^{(2)}\right) \frac{1}{\sqrt{2}}(\uparrow \downarrow+\downarrow \uparrow)=\frac{1}{\sqrt{2}}\left(S^{(1)} \uparrow\right) \downarrow \\
& +\frac{1}{\sqrt{2}} \uparrow\left(S^{(2)} \downarrow\right)+\frac{1}{\sqrt{2}}\left(S^{(1)} \not \downarrow\right) \uparrow+\frac{1}{\sqrt{2}} \downarrow\left(S^{(2)} \uparrow\right) \\
& =\frac{1}{\sqrt{2}} \hbar \downarrow \downarrow+\frac{1}{\sqrt{2}} \hbar \downarrow \downarrow=\frac{1}{\sqrt{2}} \hbar \cdot 2 \downarrow \downarrow=\sqrt{2} \hbar \downarrow \downarrow=\sqrt{2} \hbar|1-1\rangle
\end{aligned}
$$

(2) Apply raising and lowering operators $S_{ \pm}$to $|00\rangle$ state, what do you get?

$$
\begin{aligned}
& S_{-} \left\lvert\, 007=S_{-} \frac{1}{\sqrt{2}}(\uparrow \downarrow-\downarrow \uparrow)=\right. \\
& \left.=\frac{1}{\sqrt{2}}\left(S_{-}^{(1)} \uparrow\right) \downarrow+\frac{1}{\sqrt{2}} \uparrow S_{-}^{(2)} \downarrow\right) \\
& -\frac{1}{\sqrt{2}}\left(S_{-}^{(1)} \downarrow\right) \uparrow-\frac{1}{\sqrt{2}} \downarrow\left(S_{-}^{(2)} \uparrow\right)=\frac{1}{\sqrt{2}} \hbar \downarrow \downarrow-\frac{1}{\sqrt{2}} \hbar \downarrow \downarrow=0 \\
& S_{+}^{(1)} \downarrow=S_{+}^{(1)}\left|\frac{1}{2}-\frac{1}{2}\right\rangle=\underbrace{\sqrt{\frac{1}{2} \cdot \frac{3}{2}-\left(-\frac{1}{2}\right)\left(-\frac{1}{2}+1\right)}} \hbar\left|\frac{1}{2} \frac{1}{2}\right\rangle=\hbar \uparrow \\
& S_{+}|00\rangle=\left(S_{+}^{(1)}+S_{+}^{(2)}\right)(\uparrow \downarrow-\downarrow \uparrow) \\
& =\frac{1}{\sqrt{2}}\left(S_{+}^{(1)}+\prod^{0} \downarrow+\frac{1}{\sqrt{2}} \uparrow\left(S_{+}^{(2)} \downarrow\right)-\frac{1}{\sqrt{2}}\left(S_{+}^{(1)} \downarrow\right) \uparrow-\frac{1}{\sqrt{2}} \downarrow\left(S_{+}^{(2)} \uparrow\right)^{0}\right) \\
& =\frac{1}{\sqrt{2}} \hbar \uparrow \uparrow-\frac{1}{\sqrt{2}} \hbar \uparrow \uparrow=0
\end{aligned}
$$

Summary: Combination of two spin $1 / 2$ particles can carry a total spin of $s=1$ or $s=0$, depending on whether they occupy the triplet or singlet configuration.

