
Lecture 22

Eigenfunctions of         and              

Using the expressions for r and    in spherical  coordinates:

we can show (see pages 167-169 of the textbook) that

The eigenfunctions         of        and       are determined from

and      are the corresponding  eigenvalues that we found using

algebraic method during the last lecture.

First, we need to write these operators in spherical coordinates to establish what  
equations we are dealing with here.

We start with the definition for the angular  momentum:

where
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Therefore,

But, this is exactly the angular equation for                that we got when we have done
the separation of variables:

Angular equation:

You can now see the reason for
calling the separation constant
              !

The second equation is

This is equivalent to the equation for       that we got when we separated variables       
and     :

Again, this is why we called the separation

                                      constant        .

Therefore, we already solved this system of equations and know the answer; the
eigenfunctions that we are looking for are spherical harmonics                .

In fact, when we separated the variables, we constructed the eigenfunctions of
H ,       , and       :
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L22.P3

We note now that our algebraic solution allows both integer and half-integer values of  
and    , but separation of variable gave only integer values of   and     . What about the  
half-integer solutions?

To understand the significance of half-integer solutions, we return back in time to 1922,

Even in Bohr's model of the hydrogen atom, an electron, which is a charged particle,
occupies a circular orbit, rotating with orbital angular momentum L. A moving charge
is equivalent to electric current, so an electron moving in a closed orbit forms a current loop
and this, therefore,  creates a magnetic dipole. The corresponding magnetic dipole moment 
is given by:

when O. Stern and W. Gerlach conducted experiment to measure the magnetic  dipole
moments of atoms. The results of these experiments could not be explained  by classical
mechanics. First, let's discuss why would atom poses a magnetic moment.

If the atom with a magnetic moment       is placed in a magnetic field B, it will experience
a net force F,

Stern suggested to measure the magnetic moments of atoms by deflecting atomic beam by
inhomogeneous magnetic field. In the experimental setup, the only force on the atoms
is in z direction and

The direction of magnetic moment in the beam is random, so every value of        in the
range                                 is expected. As a result, the deposit on the collecting
plate is expected  to be spread continuously over a symmetrical region about the point of no
displacement.
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H    1s
Na  {1s22s22p6}3s1

K    {1s22s22p63s23p6}4s1

Cu  {1s22s22p63s23p63d10}4s1

Ag  {1s22s22p63s23p63d104s24p64d10}5s1

Cs  {[Ag]5s25p6}6s1

Au  {[Cs]5d104f14]6s1

Conclusion: elementary particles carry intrinsic angular momentum S in addition to L.
Spin of elementary particles has nothing to do with rotation, does not depend on
coordinates        and       , and is purely a quantum mechanical phenomena.

Electronic configurations of atoms in  Stern-Gerlach experiments:
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The Stern-Gerlach experiment

Expected: uniform distribution deflections
as the direction of the atomic magnetic 
moment  is at random and every value of 
the can occur in z direction.

Found: two distinct traces
(beam was split to two components)

So multiplicity α=2l+1=2  l=1/2?

Ag, Au, Cu, Na, K, Cs, H
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Fundamental commutation relations:

Therefore, all our results from algebraic  derivations apply, and we can write:

are the eigenfunctions.

Both integer and half-integer values of s and m are possible.

All elementary particles have specific value of s, it is always the same for  the

same type of particle. For example, photons have spin 1 and electrons have spin    

Also,

where
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Spin

         , therefore                 and there are two eigenstates

We will call them spin up                  and spin down                  .

Taking these eigenstates to be basis vectors, we can express any spin state of a
particle with  spin      as:

All our spin operators are 2x2 matrixes for spin        , which we can find out from how
they act on our basis set states         and      .

Example: find matrix representation of

Solution:

We write matrix      as with 4 unknowns
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Now, we take the second equation for

Putting it all together, we get our matrix
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Class exercise 8

Find matrix representations for                        and             for   spin

Hint: to find         use

To find           and            , first  use

to find          and         . Next, use definitions                                  and to find        
and       .

Solution

Note that these also come from  definitions of
operators, since

Plugging s, m into formula (1) will give zero too, of  course.

   Lecture 22 Page 1    



L22.P10

Summary:
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