Lecture 19

The hydrogen atom

Heavy proton (put at the origin), charge e and much lighter electron, charge -e.

Potential energy, from Coulomb's law

$$
V(r)=-\frac{e^{2}}{4 \pi \varepsilon_{0}} \frac{1}{r}
$$

Our mission is to find the allowed energies E and the corresponding wave functions While there are both continuum ($\mathrm{E}>0$) and bound ($\mathrm{E}<0$) states for the Coulomb potential, we will only consider bound states now. Since this potential is spherically symmetric, we were looking for the wave function in a form

$$
\psi_{n} \ell_{m}(r, \theta, \phi)=R_{n e}(r) \underbrace{Y_{e}^{m}(\theta, \phi)}_{\substack{\text { spherical harmonics }}}
$$

We solved the radial equation and found the radial functions

$$
R_{n l}=\frac{1}{r} \rho^{\ell+1} e^{-\rho} v(\rho)
$$

where $v(\rho)$ is a power series

$$
v(\rho)=\sum_{j=0}^{j \max } C_{j} \rho_{j}^{j} \quad j_{\max }=n-l-1
$$

The coefficients of this power series are given by

$$
c_{j+1}=\frac{2(j+l+1-n)}{(j+1)(j+2 l+2)} c_{j}
$$

C_{0} is determined from the normalization condition.

We found the energies to be

$$
\begin{aligned}
& E=\frac{E_{1}}{n^{2}}, n=1,2,3, \ldots . \\
& E_{1}=-\left[\frac{m}{2 \hbar^{2}}\left(\frac{e^{2}}{4 \pi \varepsilon_{0}}\right)^{2}\right]=-13.6 \mathrm{eV} \leftarrow \begin{array}{l}
\text { Ground } \\
\text { state energy } \\
\text { of hydrogen }
\end{array}
\end{aligned}
$$

Now we can write down actual wave functions.
First, we need to express ρ via r :

$$
\rho=K r, \quad k=\underbrace{\left(\frac{m e^{2}}{4 \pi \varepsilon_{0} \hbar^{2}}\right)}_{1 / a} \frac{1}{n}=\underbrace{\substack{\text { Bohr } \\
\text { radius }}}_{\left[\begin{array}{ll}
a_{n} \\
& a_{0}
\end{array}\right] \quad \frac{1}{m e^{2}} \hbar^{\frac{1}{2}}=0.529 \times 10^{-10} \mathrm{~m}}
$$

$$
\rho=\frac{r}{a n}
$$

Let's get some lower functions.
(1) Ground state of hydrogen: $\mathrm{n}=1, \mathrm{I}=0, \mathrm{~m}=0$.

$$
\psi_{100}(r, \theta, \phi)=R_{10}(r) \underbrace{Y_{0}^{0}(\theta, \phi)}_{=\frac{1}{\sqrt{4 \pi}}}
$$

Exercise 1: find \mathbf{R}_{10} and normalize it.

$$
c_{j+1}=\frac{2(j+l+1-n)}{(j+1)(j+2 l+2)} c_{j} .
$$

Plug in $\left\{\begin{array}{l}n=1 \\ l=0 \\ j=0\end{array} \Rightarrow\right.$ get $C_{1}=0 . \quad \begin{array}{l}j_{\text {max }}=n-l-1 \\ j_{\text {max }}=0\end{array}$

$$
\begin{aligned}
& v(\rho)=\sum_{j=0}^{j \max } c_{j} \rho^{j}=c_{0} \quad[\text { constant }] \\
& R_{n l}=\frac{1}{r} \rho^{l+1} e^{-\rho} v(\rho) \Rightarrow R_{10}=\frac{1}{r} \rho e^{-\rho} c_{0} \\
& R_{10}=\frac{1}{\pi}{\underset{a}{n}}_{n=1}^{n} e^{-\frac{r}{a n c}} c_{0}=\frac{c_{0}}{a} e^{-r / a}
\end{aligned}
$$

Normalization:

$$
\begin{aligned}
& \int_{0}^{\infty}|u|^{2} d r=1 \\
& \int_{0}^{\infty}\left|R_{10}\right|^{2} r^{2} d r=\frac{\left|c_{0}\right|^{2}}{a^{2}} \int_{0}^{\infty} e^{-2 r / a} r^{2} d r \\
& =\left|c_{0}\right|^{2} \frac{a}{4}=1 \Rightarrow \\
& C_{0}=\frac{2}{r a}
\end{aligned}
$$

$$
Y_{0}^{0}=\frac{1}{\sqrt{4 \pi}} \Rightarrow \psi_{100}(r, \theta, \phi)=\frac{1}{\sqrt{\pi a^{3}}} e^{-r / a}
$$

Exercise 2: find \mathbf{R}_{20} and $\mathbf{R}_{\mathbf{2 1}}$, don't need to normalize.

$$
\begin{aligned}
& \text { (1) } \begin{array}{l}
l=0 \\
n=2
\end{array} \quad c_{j+1}=\frac{2(j+l+1-n)}{(j+1)(j+2 l+2)} c_{j} . \\
& j=0 \quad c_{1}=\frac{2(0+0+1-2)}{1(2)}=-c_{0} \\
& C_{2}=0 \quad \text { since } \quad j_{\max }=n-l-1=1 \\
& v(\rho)=c_{0}(1-\rho) \quad R_{n l}=\frac{1}{r} \rho^{l+1} e^{-\rho} v(\rho) \quad \rho=\frac{r}{a n}=\frac{r}{2 a}
\end{aligned}
$$

$$
R_{20}=\frac{1}{r}\left(\frac{r}{2 a}\right) e^{-r / 2 a}\left(1-\frac{r}{2 a}\right) c_{0} \quad R_{20}=\frac{c_{0}}{2 a}\left(1-\frac{r}{2 a}\right) e^{-r / 2 a}
$$

$$
\begin{aligned}
& \text { (2) } l=1 \Rightarrow j_{\text {max }}=1 \\
& n=2 \\
& \rho=\frac{r}{2 a} \\
& R_{21}=C_{0} \frac{1}{r}\left(\frac{r}{2 a}\right)^{2} e^{-r / 2 a} \Rightarrow e_{0}
\end{aligned} \Rightarrow \begin{aligned}
& R_{21}=\frac{C_{0}}{4 a^{2}} r e^{-r / 2 a}
\end{aligned}
$$

We can see now that for a given value of n, these values of I are possible:

$$
\ell=0,1,2, \ldots n-1
$$

since $n \equiv j_{\text {max }}+l+1$
If, for example, you try to take $n=l \Rightarrow$

$$
n=j_{\max }+n+1 \quad \quad \operatorname{mimax}<0
$$

Now we can calculate degeneracy of the level E_{n} :
For each n, there are $I=0 \ldots n-1$ and for each I, there are $2(I+1)$ values of m :

$$
d(n)=\sum_{l=0}^{n-1}(2 l+1)=n^{2}
$$

The polynomial that is determined by our recursion formula is knows as associate daguerre polynomial (up to normalization).

$$
\begin{gathered}
v(\rho)=L_{n-l-1}^{2 l+1}(2 \rho) \\
L_{q-p}^{p}(x) \equiv(-1)^{p}\left(\frac{d}{d x}\right)^{p} L_{q}(x)
\end{gathered}
$$

where $\quad L_{q}(x) \equiv e^{x}\left(\frac{d}{d x}\right)^{q}\left(e^{-x} x^{q}\right)$ is called the qth Laguerre polynomial.

The normalized hydrogen wave functions are

$$
\psi_{n l m}=\sqrt{\left(\frac{2}{n a}\right)^{3} \frac{(n-l-1)!}{2 n[(n+l)!]^{3}}} e^{-r / n a}\left(\frac{2 r}{n a}\right)^{l}\left[L_{n-l-1}^{2 l+1}\left(\frac{2 r}{n a}\right)\right] Y_{l}^{m}(\theta, \phi)
$$

Note: the energies depend only on n.
Orthogonality:

$$
\int \psi_{n l m}^{*} \psi_{n^{\prime} l^{\prime} m^{\prime}} r^{2} \sin \theta d r d \theta d \phi=\delta_{n n^{\prime}} \delta_{l l^{\prime}} \delta_{m m^{\prime}}
$$

Simulations:

Models of the hydrogen atom
http://phet.colorado.edu/new/simulations/index.php?cat=Quantum Phenomena
Hydrogen atom orbitals:
http://www.falstad.com/mathphysics.html

$$
\begin{aligned}
& \sin (a \pm b)=\sin a \cos b \pm \cos a \sin b \\
& \cos (a \pm b)=\cos a \cos b \mp \sin a \sin b \\
& c^{2}=a^{2}+b^{2}-2 a b \cos \theta \\
& \int x \sin (a x) d x=\frac{1}{a^{2}} \sin (a x)-\frac{x}{a} \cos (a x) \\
& \int_{\infty} x \cos (a x) d x=\frac{1}{a^{2}} \cos (a x)+\frac{x}{a} \sin (a x) \\
& \int_{0}^{\infty} x^{n} e^{-x / a} d x=n!a^{n+1} \\
& \int_{0}^{\infty} x^{2 n} e^{-x^{2} / a^{2}} d x=\sqrt{\pi} \frac{(2 n)!}{n!}\left(\frac{a}{2}\right)^{2 n+1} \\
& \int_{0}^{\infty} x^{2 n+1} e^{-x^{2} / a^{2}} d x=\frac{n!}{2} a^{2 n+2} \\
& \int_{a}^{b} f \frac{d y}{d x} d x=-\int_{a}^{b} \frac{d f}{d x} g d x+\left.f g\right|_{a} ^{b} \\
& a
\end{aligned}
$$

