Lecture \#18
The radial equation
The angular part of the wave function $Y_{l}^{m}(\theta, \phi)$ is the same for all spherically symmetric potentials. To solve the radial equation, we need the know $\mathrm{V}(\mathrm{r})$.

$$
\frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)-\frac{2 m r^{2}}{\hbar^{2}}(v(r)-E) R=l(l+1) R
$$

To simplify this equation, we change variables

$$
\begin{aligned}
& u(r) \equiv r R(r), \quad R=u / r \\
& \frac{d R}{d r}=\frac{d}{d r}\left(\frac{u}{r}\right)=\frac{1}{r} \frac{d u}{d r}-\frac{1}{r^{2}} u \\
& \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)=\frac{d}{d r}\left\{r \frac{d u}{d r}-u\right\}=\frac{d u}{d r}+r \frac{d^{2} u}{d r^{2}}-\frac{d x}{d r} \\
& =r \frac{d^{2} u}{d r^{2}} \Rightarrow \\
& r \frac{d^{2} u}{d r^{2}}-\frac{2 m r^{2}}{\hbar^{2}}(V-E) \frac{u}{x}=e(l+1) \frac{u}{r} \\
& \frac{d^{2} u}{d r^{2}}-\frac{2 m}{\hbar^{2}} V u+\frac{2 m}{\hbar^{2}} E u=e(e+1) \frac{u}{r^{2}} \\
& -\frac{\hbar^{2}}{2 m} \frac{d^{2} u}{d r^{2}}+V u+l(l+1) \frac{u}{r^{2}} \frac{\hbar^{2}}{2 m}=E u \\
& \begin{array}{l}
\text { Radial } \\
\text { equation }
\end{array}-\frac{\hbar^{2}}{2 m} \frac{d^{2} u}{d r^{2}}+\left[v+\frac{\hbar^{2}}{2 m} \frac{l(l+1)}{r^{2}}\right] u=E u \\
& V_{\text {eff }}=V+\frac{\hbar^{2}}{2 m} \frac{l(l+1)}{r^{2}}
\end{aligned}
$$

This equation looks exactly like time-independent Schrödinger equation $H \mathcal{H}=E$ with $V \rightarrow V_{\text {eff }} . \quad \int_{0}^{\infty}|R|^{2} r^{2} d r=1 \quad$ becomes

$$
\int_{0}^{\infty}|u|^{2} d r=1
$$

Summary for radial equation:

$$
\begin{aligned}
& u(r)=r R(r) \\
& -\frac{\hbar^{2}}{2 m} \frac{d^{2} u}{d r^{2}}+\left[v+\frac{\hbar^{2}}{2 m} \frac{l(l+1)}{r^{2}}\right] u=E u \\
& \int_{0}^{\infty}|u|^{2} d r=1
\end{aligned}
$$

Heavy proton (put at the origin), charge e and much lighter electron, charge -e.

Potential energy, from Coulomb's law

$$
V(r)=-\frac{e^{2}}{4 \pi \varepsilon_{0}} \frac{1}{r}
$$

Radial equation:

$-\frac{\hbar^{2}}{2 m} \frac{d^{2} u}{d r^{2}}+\left[-\frac{e^{2}}{4 \pi \varepsilon_{0}} \frac{1}{r}+\frac{\hbar^{2}}{2 m} \frac{l(l+1)}{r^{2}}\right] u=E u$

Our mission is to find the allowed energies E and the corresponding functions $u(r)$. The approach is essentially the same as in the case of analytical solution for harmonic oscillator. While there are both continuum ($\mathrm{E}>0$) and bound ($\mathrm{E}<0$) states for the Coulomb potential, we will only consider bound states now.

Step 1. First, we introduce some designations to put this equation in a bit "cleaner" form.

$$
\begin{array}{ll}
K \equiv \frac{\sqrt{-2 m E}}{\hbar} \longleftarrow & \begin{array}{l}
\text { Remember, } \mathrm{E}<0 \text { for the bound states } \\
\text { so } K
\end{array} \\
\rho \equiv K r & \rho_{0} \equiv \frac{m e^{2}}{2 \pi \varepsilon_{0} \hbar^{2} K}
\end{array}
$$

Substituting the above notations into our equation gives

$$
\frac{d^{2} u}{d \rho^{2}}=\left[1-\frac{\rho_{0}}{\rho}+\frac{\ell(l+1)}{\rho^{2}}\right] u
$$

Step 2. Study the asymptotic form of the solutions.
(a) $\rho \rightarrow \infty \Rightarrow$

$$
\frac{d^{2} u}{d \rho^{2}}=\left[1-\frac{\rho f}{\beta}+\frac{e(l+f(1)}{f^{2}}\right] u
$$

constant term dominates

$$
\frac{d^{2} u}{d \rho^{2}}=u \text { and } u(\rho)=A e^{-\rho}+B / e^{\rho}
$$

This term blows up at $\rho \rightarrow \infty \Rightarrow$
Therefore, for large $\rho u=A e^{-\rho}$. get rid of it. $B=0$
(b) $\rho \rightarrow 0 \Rightarrow \frac{d^{2} u}{d \rho^{2}}=\left[\not \chi-\rho_{\rho}+\frac{l(l+1)}{\rho^{2}}\right] u$ this term dominates

$$
\frac{d^{2} u}{d \rho^{2}}=\frac{\ell(\ell+1)}{\rho^{2}} u
$$

The general solution of this equation is $u(\rho)=C \rho^{\ell+1}+D / \rho^{-\ell}$
This solution Therefore, for small $\rho \quad u(\rho)=C \rho^{\ell+1}$. blows up at $\rho \rightarrow 0 \Rightarrow D=0$

Step 3. Separate out the asymptotic behavior.

$$
u(\rho)=\rho^{l+1} e^{-\rho} v(\rho)
$$

Plugging this expression back into the radial equation $\frac{d^{2} u}{d \rho^{2}}=\left[1-\frac{\rho_{0}}{\rho}+\frac{\ell(l+1)}{\rho^{2}}\right] u$ yields the equation for the function v :

$$
\rho \frac{d^{2} v}{d \rho^{2}}+2(l+1-\rho) \frac{d v}{d \rho}+\left[\rho_{0}-2(l+1)\right] v=0 \quad(1)
$$

Step 4. Look for the solutions of the above equation in the form of a power series.

$$
v(\rho)=\sum_{j=0}^{\infty} c_{j} \rho^{j} \text { need to find } C_{0}, C_{1}, C_{2}, \ldots
$$

Substituting this expansion into equation (1) gives the formula for determining the coefficients c . The resulting recursion formula is:

$$
c_{j+1}=\left\{\frac{2(j+l+1)-\rho_{0}}{(j+1)(j+2 l+2)}\right\} c_{j}
$$

How to use this formula?
Start with $C_{0}(j=0)$, determine C_{1}. Next, get C_{2} from C_{1} and so on. The overall coefficient C_{0} becomes normalization constant.

Step 5. Study how these coefficients look for large j. We must ensure that the solution does not blows up for large ρ.

$$
c_{j+1}=\left\{\frac{2(\underline{j}+l+1)-\rho_{0}}{(\underline{j}+1) \underline{(j+2 l+2)}}\right\} c_{j} \overrightarrow{l \times r \times j} c_{j+1} \cong \frac{2 j}{(j(j+1)} c_{j}=\frac{2}{j+1} c_{j}
$$

If this formula were exact it would give

$$
\begin{aligned}
& c_{j}=\frac{2^{j}}{j!} c_{0} \Rightarrow v(\rho)=c_{0} \sum_{j=0}^{\infty} \frac{2^{j}}{j!} \rho^{j}=c_{0} e^{2 \rho} \\
& u(\rho)=c_{0} \rho^{\ell+1} e^{\rho} \leftarrow \text { blow up at large } \rho .
\end{aligned}
$$

Solution: the power series must terminate.
Therefore, for some maximal integer $j_{\max }$

$$
c_{j_{\max }+1}=0
$$

This will obviously terminate the entire series, since all other higher coefficients will be zero as well.

$$
2\left(j_{\max }+l+1\right)-\rho_{0}=0
$$

We define $n \equiv j_{\text {max }}+\ell+1$ and call it principal quantum number.

$$
2 n=\rho_{0}
$$

Now, we remember what ρ_{0} was: $\rho_{0} \equiv \frac{m e^{2}}{2 \pi \varepsilon_{0} \hbar^{2} K}, k \equiv \frac{\sqrt{-2 m E}}{\hbar}$

$$
k^{2}=-\frac{2 m E}{\hbar^{2}} \Rightarrow E=-\frac{\hbar^{2} k^{2}}{2 m}
$$

$$
\begin{aligned}
& E=-\frac{\hbar^{2} k^{2}}{2 m} k^{2}=\frac{m^{2} e^{4}}{4 \pi^{2} \varepsilon_{0}^{2} \hbar^{4}\left(\rho_{0}^{2}\right.}=4 n^{2} \\
& E=-\frac{\hbar^{2}}{2 m x} \frac{m^{2} e^{4}}{4 \pi^{2} \varepsilon_{0}^{2} \hbar^{4^{2}} 4 n^{2}}=-\underbrace{\left[\frac{m}{2 \hbar^{2}}\left(\frac{e^{2}}{4 \pi \varepsilon_{0}}\right)^{2}\right]}_{E_{1}} \frac{1}{n^{2}}
\end{aligned}
$$

$$
E=\frac{E_{1}}{n^{2}}, n=1,2,3, \ldots .
$$

Famous Bohr formula

$$
\begin{aligned}
& n=1 \quad E_{1}=-\left[\frac{m}{2 \hbar^{2}}\left(\frac{e^{2}}{4 \pi \varepsilon_{0}}\right)^{2}\right]=-13.6 \mathrm{eV} \\
& n=2 \quad E_{2}=\frac{E_{1}}{2^{2}}=\frac{-13.6 \mathrm{eV}}{4}=-3.4 \mathrm{eV}
\end{aligned}
$$

Ground state energy

Next energy state [s]. [Degenerate]

Summary:

$$
\begin{aligned}
& \psi_{n l m}(r, \theta, \phi)=R_{n e}(r) Y_{\ell}^{m}(\theta, \phi) \\
& R_{n l}=\frac{1}{r} \rho^{\ell+1} e^{-\rho} v(\rho) \quad \rho=k r \\
& v(\rho)=\sum_{j=0}^{j \max } C_{j} \rho^{j}, \quad j_{\max }=n-l-1 \\
& C_{j+1}=\frac{2(j+l+1-n)}{(j+1)(j+2 l+2)} C_{j}
\end{aligned}
$$

Note: need to normalize functions to get C_{0},

