Lecture #18

The radial equation

The angular part of the wave function Y v/i( 6, #) is the same for all spherically symmetric
potentials. To solve the radial equation, we need the know V(r).
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This equation looks exactly like time-independent Schrodinger equation HY =g\

with V = vq,_,; . P
The normalization condition Y [ R l" 7 clr =\ becomes
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Summary for radial equation:
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The hydrogen atom

Heavy proton (put at the origin), charge e and much

e e S lighter electron, charge -e.
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Radial equation:
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Our mission is to find the allowed energies E and the corresponding functions «(r).
The approach is essentially the same as in the case of analytical solution for harmonic
oscillator. While there are both continuum (E> 0) and bound (E < 0) states for

the Coulomb potential, we will only consider bound states now.

Step 1. First, we introduce some designations to put this equation in a bit "cleaner" form.

-2mE «— Remember, E< 0 for the bound states
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Substituting the above notations into our equation gives
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Step 2. Study the asymptotic form of the solutions.
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The general solution of this equation is M(f) = CJD -+ :Df
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Step 3. Separate out the asymptotic behavior.
L+1 .
wip) = P e w( P
“w \ J) K—M)
Plugging this expression back into the radial equation I‘;_ = - :—f— + —fz—

yields the equation for the function U:
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Step 4. Look for the solutions of the above equation in the form of a power series.
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Substituting this expansion into equation (1) gives the formula for determining the
coefficients c. The resulting recursion formula is:
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How to use this formula?
Start with C, (j = 0), determine ¢,. Next, get €, from C, and so on.
The overall coefficient ¢, becomes normalization constant.

Step 5. Study how these coefficients look for large J . We must ensure that the
solution does not blows up for large J’ .
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If this formula were exact it would give
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Solution: the power series must terminate.

Therefore, for some maximal integer Jm ax
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This will obviously terminate the entire series, since all other higher coefficients will
be zero as well. ‘4
From equation must be 2zero for J max
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We define N = Jmay + L + ) andcallit principal quantum number.
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Note: need to normalize functions to get Co,
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