Lecture #17

Quantum mechanics in three dimensions

Schrodinger equation in spherical coordinates

How do we generalize Schrédinger equation to three dimensions?
Y
s Wy

2N
Hamiltonian in 3D is (from classical energy)

H= Smy ™tV = 2\7«. (pﬂrﬁ*?;)*

We previously used P" - - Lt %

L2
Thus, P?_%,—L{,—‘ 5y P}—H—qkaz_

F—%—iﬁv

Therefore, Schrédinger equation in three dimensions is

2,
A G ;5— iy vy
>t m
2 2
Z 3% + g _}— is the Laplacian in cartesian coordinates.

v 23’;1 9»3 e

\P and V are functions of \r‘ (~, % z) and +,
3
The probability to find particle in volume ~ d *— = lx«ltad?.— is Lw(r )\ J .

-

2
The normalization condition is S @ | d°r
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L17.P2

If potential V does not depend on time, we can define stationary states, just as in
one dimension:
—lEnt/L

Yo (F £) = 4. (F)e

where functions Y., (?) satisfy the time-independent Schrédinger equation in three
dimensions:

_ K Vv
QW\V‘*-‘-\‘/

By complete analogy with one-dimensional case, the general solution of Schrédinger
equation in three dimensions is

—VEt
W(R,x) = Z el e

Coefficients C, are obtained as before from the wave function at t=0, % (v 0).
If the spectrum is continuous, sum in the above equation becomes an integral.

Separation of variables in spherical coordinates

In many important problems, potential V is spherically symmetric, i.e. depends only on
distance r from the origin. It is convenient to use spherical coordinates in such cases.

: P
(r,o,¢)
We look for solutions that separate into the
product of two functions: one that depends only
r on r and another that depends on &
0 and ©
4 Y(r,0,$)=R(r)Y 6, ¢)
Y distance from the origin

X = Y‘SinQOOS‘f
taz CSin @ Sin\f

Z2=CwsHO
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The Laplacian in spherical coordinates is

' ?
vz___l. 9 rzi)_\_ — (sme’*> (ﬁ¢)
r>ar\ 2] r%jag 30 26 ] viside

Substituting <9 and % =RY intothe Schrédinger equation,

we get:
R Y
_._Jﬁ_z’ i i('rl.‘i‘ﬁ + f 3<mel\r) iatg O9* +VRY = ERY
am ) r2drl dr | risiee 30 90 | rsin"®
We want to separate this equation into two parts, one that depends only on r and
another that dependsonlyon ¢ and e ; hence the "separation of variables".
2
We multiply the equation by — ?l“j_ :
2 YR
2,
o JY
L () Dory gy, )L 2 (sino 2 K '1& =0
R dr dr % \/ Sin 9 6 Slh of

| —c
This part only depends on r. This part only depends on © and ;5 :

Therefore, we can separate this equation into two with some separation constant c.
For reasons that will eventually become clear, we will write this separation constant ¢
as ¢ =4(L+ 1) (since it is a constant, we can write it any way we want.)

Radial equation:

Ld (pn <LR> _AMT (y(- E) = 6L
R de dr W

Angular equation:

Y
‘ 2 31) R (Lt
({' Sine® OO (sme YY) Sin" O 3¢1 )
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Since the angular equation does not depend on the potential and its solutions give
angular functions Y for any spherically symmetric problem, we consider it first. To
solve the radial equation, we need to know V.

Angular equation

YR
Sin © 2, sin® %1 >+ E—I =—2tt)sine Y
X3 '395"

oe
We separate variables again and look for solutions in the form:

N(o, 4) = 6(a\DP(p)

4P

CP sin © A <3iv\9 %9)-» L) sin 0P + 9 “— A;b’-

do b
We divide this equation by CP@ and separate parts that depend on ¢ and © .

L{S"n C] i S;V‘J_g))}*— Z/(e-(’\)si“le + < AzCP =
(@) d0 CP QL¢2.

U L
Dependson 0 . m* T -
Depends on 75 .

3
This time we are going to call separation constant m .
o Y
PR N 2
0: ~ sine 4 Sin ‘5\@) + 2Lt 1)sin ©® = |m
() do 40

4°9 2

— = |- M

2

Q|-

Lecture 17 Page 4



L17.P5

Let's consider CP equation first, since it is easy:

m —Im
@ ‘l_z._ == m® =7 q):_ei;é or P= € ’

We will allow m to be either positive or negative, so we can leave only solution

@ - eam)‘4

-

We require that @ (¢ + 1) = CP(?S) since ¢ and ¢+21T correspond

to the same point in space.

Ty Cd+ 2 ) I m im 2T

Therefore, m has to be an integer.

{@zﬂfm: cos (2Tm) + Asin(2mm) = | f m s thfé(/r.}

h~\¢
Summary: QP = e Com= O, x4, T2, ...

@ We now consider equation for @ :

Sin© S (s‘\ne “—L—@-) + @(@44)Sinze —ml]@=o
do Ae

m
The solutions of this equation are &) (o) = APy (coso) , Where

M . T
. . . . - r\‘
P ¢ s the associated Legendre function | C t?M\POSI tive in k@b

92(1) 3(\-—7(_1)““\/2 (j:) Pe(lx) omd

+h
P L (x) isthe L Legendre polynomial. ‘—-""J
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The Legendre polynomial Pe is defined by the Rodrigues formula:

L=0 =7 P, (x) =4

L

Let's get a few first functions to see how these formulas work:

=41 =) P\('Xr) =

=2 =3P () =

o
Al dx

d (x-1) =3 (=2

":T (é-j ('xz— 43?-

:__(_ A_—_%' 2(11’1)'2)‘} _—,?__-L _4-_(%3_x):2l—(3x -1)

3 dv

Now on to associated Legendre functions:

I \

JICOENTEE (j‘) Pele) | x=co50

X

{=0| P,(h0)=1

m=0| = P

~
—_—

=% =) P

P O o

"

0

" .o
This is general property, if || m| 2 € =) PJL B

iL =0

T\m&s

)

L
(1- )

i
—~
Po(x) =0

|~

d
dx

o
= Mm=9 ?o:
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m= | P\ = (\- DCL)‘IZ f (x) = \ll‘COSzQ

wm= % 9 \’\2 =0 [:&z":ol hs we V\ox-ccl above .

o
T\I\/ULS\ =1 m =0 P\ = cos O
™ = | P, =<In®.
same for m=-1

5umw\arn3: ©(e) = AP, (tose)
{ =0,1, X...

ilml¢e & =)

For each (, there are 2{+ | possible values of M .

o L

m= - Z)—C‘M)Wo)'l’

We still need to find out A from normalization condition.

2
In spherical coordinates volume element is d 3[' =r sin® Jr‘JGJ}é

Normalization gives: g l‘{'(?,—k)\zclsr = g \\H’Lrlsi\n 0 Jrielyf

= SR o2de (i 1®sinodedg =4
k/‘y’—_'

\/—V\J
4 i <& Convenient to normalize

R and Y separately.
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>

2 2 Normalization condition for radial
S IR ¢*dr=1 |<— .
" function R.

T T
g g | Y IZ s\ino 49 Jfé - 1 Normalization
0 0

condition for Y.

Note -“\a‘t © £H £ LT and 0 €O £T,

The normalized angular wave functions are called spherical harmonics:

m (2841) (4= ImD)! _ImF m
= (cos®
Yolog)=e ar (eoen & P )

These functions are orthogonal:

2t T

K g [Y‘:\(ei¢)1¥ Y:f(&qb)smelecl;é:&e'cgmw
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Summary

The general solution of Schrédinger equation in three dimensions (if V does not depend
on time)

N 3 2'
3 i G ivq»-t-w H= -5y
a.t 2m
° VBt IE
W(R,x) = Z Catn(T) e ,
n
where functions Y ?) are solutions of time-independent Schrddinger equation
Rty 4+ V CHY=EY]
= p Y = .

If potential V is spherically symmetric, i.e. only depends on distance to the origin r,
then the separable solutions are

P (r 9 ¢)= R Y (e )

~

where R(r) are solutions of radial equation

Ld (FZ'LR) _AMT (y- B) = eet)
Rde' dr e

P

2 2
with normalization condition g [RI ¢ dr=1
o)
The spherical harmonics are

_ im P
(2¢+1) (£- Im))! F:(me)

4 '
associated Legendre functions

™
é:_ (,‘\) M7/O e 2,\‘-\
1 meo m= —6 —0 t1, N

)

Y7 le p) = ¢
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