Quantum mechanics in three dimensions
Schrödinger equation in spherical coordinates
How do we generalize Schrödinger equation to three dimensions?

$$
\begin{aligned}
i \hbar \frac{\partial \psi}{\partial t}= & \underbrace{\psi}_{\text {Hamiltonian in 3D is (from classical energy) }} \\
& H=\frac{1}{2} m v^{2}+V=\frac{1}{2 m}\left(p_{x}^{2}+p_{y}^{2}+p_{z}^{2}\right)+V
\end{aligned}
$$

We previously used $\quad p_{x} \rightarrow-i \hbar \frac{\partial}{\partial x}$.
Thus, $\quad p_{y} \rightarrow-i \hbar \frac{\partial}{\partial y}, \quad p_{z} \rightarrow-i \hbar \frac{\partial}{\partial z}$.

$$
\vec{p} \rightarrow-i \hbar \nabla
$$

Therefore, Schrödinger equation in three dimensions is

$$
i \hbar \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{\partial m} \nabla^{2} \psi+v \psi
$$

$\nabla^{2} \equiv \frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$ is the Laplacian in cartesian coordinates.
ψ and V are functions of $\vec{r}=(x, y, z)$ and t.
The probability to find particle in volume $\quad d^{3} r=d x d y d z$ is $|\psi(\bar{r}, t)|^{2} d^{3} r$.
The normalization condition is $\int|\psi|^{2} d^{3} r=1$.

If potential V does not depend on time, we can define stationary states, just as in one dimension:

$$
\psi_{n}(\bar{r}, t)=\psi_{n}(\vec{r}) e^{-i E_{n} t / \hbar}
$$

where functions $\psi_{n}(\bar{r})$ satisfy the time-independent Schrödinger equation in three dimensions:

$$
-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi+V \psi=E \psi
$$

By complete analogy with one-dimensional case, the general solution of Schrödinger equation in three dimensions is

$$
\psi(\vec{r}, t)=\sum_{n} c_{n} \psi_{n}(\bar{r}) e^{-i E_{n} t / \hbar}
$$

Coefficients C_{n} are obtained as before from the wave function at $t=0, \psi(\bar{r}, 0)$. If the spectrum is continuous, sum in the above equation becomes an integral.

Separation of variables in spherical coordinates

In many important problems, potential V is spherically symmetric, ie. depends only on distance r from the origin. It is convenient to use spherical coordinates in such cases.

The Laplacian in spherical coordinates is

$$
\nabla^{2}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta}\left(\frac{\partial^{2}}{\partial \phi^{2}}\right)
$$

Substituting ∇^{2} and $\psi=R Y$ into the Schrödinger equation, we get:

$$
\left.-\frac{\hbar^{2}}{\partial m}\left\{\frac{Y}{r^{2} d r} \frac{d}{d r} \frac{d R}{d r}\right)+\frac{R}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial Y}{\partial \theta}\right)+\frac{R}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} Y}{\partial \phi^{2}}\right\}+V R Y=E R Y
$$

We want to separate this equation into two parts, one that depends only on r and another that depends only on ϕ and θ; hence the "separation of variables".
We multiply the equation by $-\frac{2 m r^{2}}{\hbar^{2} Y R}$:

$$
\frac{1}{R} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)-\frac{2 m r^{2}}{\hbar^{2}}(V-E)+\frac{1}{Y}\left\{\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial Y}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2} Y}{\partial \phi^{2}}\right\}=0
$$

This part only depends on r.

This part only depends on θ and \varnothing.

Therefore, we can separate this equation into two with some separation constant c. For reasons that will eventually become clear, we will write this separation constant c as $c=\ell(\ell+1)$ (since it is a constant, we can write it any way we want.)

Radial equation:

$$
\frac{1}{R} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)-\frac{2 m r^{2}}{\hbar^{2}}(V(r)-E)=l(l+1)
$$

Angular equation:

$$
\frac{1}{Y}\left\{\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial Y}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2} Y}{\partial \phi^{2}}\right\}=-l(l+1)
$$

Since the angular equation does not depend on the potential and its solutions give angular functions Y for any spherically symmetric problem, we consider it first. To solve the radial equation, we need to know V .

Angular equation

$$
\sin \theta \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial Y}{\partial \theta}\right)+\frac{\partial^{2} Y}{\partial \phi^{2}}=-l(l+1) \sin ^{2} \theta Y
$$

We separate variables again and look for solutions in the form:

$$
Y(\theta, \phi)=\theta(\theta) \Phi(\phi)
$$

$\Phi \sin \theta \frac{d}{d \theta}\left(\sin \theta \frac{d \theta}{d \theta}\right)+\ell(\ell+1) \sin ^{2} \theta \theta Q+\theta \frac{d^{2} \phi}{d \phi^{2}}=0$
We divide this equation by $\Phi \Theta$ and separate parts that depend on ϕ and θ.

$$
\frac{\frac{1}{\theta}\left\{\sin \theta \frac{d}{d \theta}\left(\sin \frac{d \theta}{d \theta}\right)\right\}+l(l+1) \sin ^{2} \theta}{\uparrow_{\text {Depends on } \theta} m^{11}}
$$

$$
\begin{gathered}
+\begin{array}{|c}
\frac{1}{\Phi} \frac{d^{2} \Phi}{d \phi^{2}} \\
\uparrow-m^{2} \\
\text { Depends on } \phi
\end{array}=0 \\
\text {. }
\end{gathered}
$$

This time we are going to call separation constant

$$
m^{2}
$$

$\theta: \quad \frac{1}{\Theta}\left\{\sin \theta \frac{d}{d \theta}\left(\sin \frac{d \theta}{d \theta}\right)\right\}+l(l+1) \sin ^{2} \theta=m^{2}$
$\phi: \quad \frac{1}{\Phi} \frac{d^{2} \Phi}{d \phi^{2}}=-m^{2}$

Let's consider \mathbb{P} equation first, since it is easy:
(1) $\frac{d^{2} \phi}{d \phi^{2}}=-m^{2} \phi \Rightarrow \phi=e^{i m \phi}$ or $\phi=e^{-i m \phi}$

We will allow m to be either positive or negative, so we can leave only solution

$$
\underline{P}=e^{i m \phi}
$$

We require that $Q(\phi+2 \pi)=\Phi(\phi)$ since ϕ and $\phi+2 \pi$ correspond to the same point in space.

$$
e^{i m[\phi+2 \pi]}=e^{i m \phi} \Rightarrow e^{i m 2 \pi}=1
$$

Therefore, m has to be an integer.

$$
\left\{e^{2 \pi i m}=\cos (2 \pi m)+i \sin (2 \pi m)=1 \text { if } m \text { is integer. }\right\}
$$

Summary:

$$
\Phi=e^{i m \phi}, \quad m=0, \pm 1, \pm 2, \ldots
$$

(2) We now consider equation for Θ :

$$
\sin \theta \frac{d}{d \theta}\left(\sin \theta \frac{d \theta}{d \theta}\right)+\left[l(l+1) \sin ^{2} \theta-m^{2}\right] \Theta=0
$$

The solutions of this equation are $\theta(\theta)=A P_{e}^{m}(\cos \theta)$, where P_{l}^{m} is the associated Legendre function, l is positive integer.

$$
P_{l}^{m}(x) \equiv\left(1-x^{2}\right)^{|m| / 2}\left(\frac{d}{d x}\right)^{|m|} P_{l}(x) \quad \text { and }
$$ $P_{l}(x)$ is the $l^{\text {th }}$ Legendre polynomial.

The Legendre polynomial P_{e} is defined by the Rodrigues formula:

$$
P_{l}(x) \equiv \frac{1}{2^{l} l!}\left(\frac{d}{d x}\right)^{l}\left(x^{2}-1\right)^{l} .
$$

Let's get a few first functions to see how these formulas work:

$$
\begin{aligned}
& l=0 \Rightarrow P_{0}(x)=1 \\
& l=1 \Rightarrow P_{1}(x)=\frac{1}{2 \cdot 1} \frac{d}{d x}\left(x^{2}-1\right)=\frac{1}{2}(2 x)=x \\
& l=2 \Rightarrow P_{2}(x)=\frac{1}{2^{2} \cdot 2}\left(\frac{d}{d x}\right)^{2}\left(x^{2}-1\right)^{2} \\
& =\frac{1}{8} \frac{d}{d x}\left\{2\left(x^{2}-1\right) \cdot 2 x\right\}=\frac{1}{2} \frac{d}{d x}\left(x^{3}-x\right)=\frac{1}{2}\left(3 x^{2}-1\right)
\end{aligned}
$$

Now on to associated Legendre functions:

$$
\begin{array}{ll}
& P_{l}^{m}(x) \equiv\left(1-x^{2}\right)^{|m| / 2}\left(\frac{d}{d x}\right)^{|m|} P_{l}(x) \quad x=\cos \theta \\
l=0 & P_{0}(x)=1 \\
m=0 \Rightarrow P_{0}^{0}=1 \\
m= \pm 1 \Rightarrow P_{0}^{1}=\left(1-x^{2}\right)^{1 / 2} \frac{d}{d x} \overbrace{P_{0}(x)}^{1}=0
\end{array}
$$

This is general property, if $|m|>l \Rightarrow p_{l}^{m}=0$.
Thus, if $l=0 \Rightarrow m=0 \quad p_{0}^{0}=1$.

$$
\begin{aligned}
& l=1 \quad p_{1}=x \\
& m=0 \Rightarrow \quad p_{1}^{0}=p_{1}=x=\cos \theta \\
& m=1 \\
& {[\operatorname{cor} m=-1]}
\end{aligned} \quad \begin{aligned}
& p_{1}^{1}=\left(1-x^{2}\right)^{1 / 2} \frac{d}{d x}(x)=\sqrt{1-\cos ^{2} \theta} \\
& p_{1}^{\prime}=\sin \theta
\end{aligned}
$$

$m= \pm 2 \quad p_{1}^{2}=0 \quad\left[\frac{d^{2}}{d x^{2}} x=0\right] \quad$ as we noted above...
Thus, $l=1 \quad m=0 \quad p_{1}^{0}=\cos \theta$

$$
m=1 \quad p_{1}^{\prime}=\sin \theta
$$

same for $m=-1$

Summary: $\theta(\theta)=A P_{l}^{m}(\cos \theta)$

$$
\begin{aligned}
& l=0,1,2 \ldots \\
& |m|<l \Rightarrow
\end{aligned}
$$

For each l, there are $2 l+1$ possible values of m.

$$
m=-l,-l+1, \ldots 0,1, \ldots l
$$

We still need to find out A from normalization condition.
In spherical coordinates volume element is $\quad d^{3} r=r^{2} \sin \theta d r d \theta d \phi$
Normalization gives: $\int|\psi(\bar{r}, t)|^{2} d^{3} r=\int|\psi|^{2} r^{2} \sin \theta d r d \theta d \phi$

$$
=\underbrace{\int|R|^{2} r^{2} d r}_{1} \underbrace{\int|Y|^{2} \sin \theta d \theta d \phi}_{1}=1
$$

$$
\int_{0}^{0}|R|^{2} r^{2} d r=1
$$

$\longleftarrow \quad$ Normalization condition for radial function R.

$$
\int_{0}^{2 \pi} \int_{0}^{\pi}|Y|^{2} \sin \theta d \theta d \phi=1 \quad \leftarrow \quad \begin{aligned}
& \text { Normalization } \\
& \text { condition for } Y
\end{aligned}
$$

Note that $0 \leq \phi \leq 2 \pi$ and $0 \leq \theta \leq \pi$.
The normalized angular wave functions are called spherical harmonics:

$$
Y_{l}^{m}(\theta, \phi)=\epsilon \sqrt{\frac{(2 l+1)}{4 \pi} \frac{(l-|m|)!}{(l+|m|)!}} e^{i m \phi} p_{l}^{m}(\cos \theta)
$$

$$
\epsilon=\left\{\begin{array}{cl}
(-1)^{m} & m \geqslant 0 \\
1 & m \leq 0
\end{array}\right.
$$

These functions are orthogonal:

$$
\int_{0}^{2 \pi} \int_{0}^{\pi}\left[Y_{e}^{m}(\theta, \phi)\right]^{*} Y_{e^{\prime}}^{m \prime}(\theta, \phi) \sin \theta d \theta d \phi=\delta_{l e^{\prime}} \delta_{m m^{\prime}}
$$

Summary
The general solution of Schrödinger equation in three dimensions (if V does not depend on time)

$$
i \hbar \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi+v \psi
$$

$$
H=-\frac{\hbar^{2}}{2 m} \nabla^{2}+V
$$

is

$$
\psi(\vec{r}, t)=\sum_{n} c_{n} \psi_{n}(\vec{r}) e^{-i E_{n} t / \hbar}
$$

where functions $\psi_{n}(\vec{r})$ are solutions of time-independent Schrödinger equation

$$
-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi+V \psi=E \psi \quad[H \psi=E \psi]
$$

If potential V is spherically symmetric, ie. only depends on distance to the origin r, then the separable solutions are

$$
\Psi(r, \theta, \phi)=R(r) Y_{\ell}^{m}(\theta, \phi)
$$

where $R(r)$ are solutions of radial equation

$$
\frac{1}{R} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)-\frac{2 m r^{2}}{\hbar^{2}}(V(r)-E)=\ell(\ell+1)
$$

with normalization condition $\int_{0}^{\infty}|R|^{2} r^{2} d r=1$
The spherical harmonics are

$$
\begin{aligned}
& Y_{l}^{m}(\theta, \phi)=\epsilon \sqrt{\frac{(2 l+1)}{4 \pi} \frac{(l-|m|)!}{(l+|m|)!}} e^{i m \phi} \underbrace{p_{l}^{m}(\cos \theta)}_{\text {associated Legen }} \\
& \epsilon=\left\{\begin{array}{cc}
(-1)^{m} & m \geqslant 0 \\
1 & m \leqslant 0
\end{array} \quad \begin{array}{l}
l=0,1,2, \ldots \\
m=-l,-l+1, \ldots 0,1, \ldots l
\end{array}\right.
\end{aligned}
$$

associated Legendre functions

