Lecture \#16

Example 1:

Imagine a system in which there are just two linearly independent states

$$
|1\rangle=\binom{1}{0} \text { and }|2\rangle=\binom{0}{1} .
$$

The most general state is a normalized linear combination

$$
|5\rangle=a|17+b| 2\rangle=\binom{a}{b},|a|^{2}+|b|^{2}=1 .
$$

The Hamiltonian can be expressed as a hermitian matrix, suppose it has a form

$$
H=\left(\begin{array}{ll}
h & g \\
g & h
\end{array}\right)
$$

where h and g are real constants. If the system starts out (at $t=0$) in state 117 what is its state in time t ?

Solution

The time-dependent Schrödinger equation is $i \hbar \frac{d}{d t}|S\rangle=H|S\rangle$.
The general solution of this equation is $\quad-i E_{n} t / \hbar$

$$
|S\rangle=\sum_{n=1,2} C_{n}|s\rangle_{n} e
$$

where $|S\rangle_{n}$ are solutions of time-independent Schrödinger equation

$$
H|S\rangle_{n}=E_{n}|S\rangle_{n}
$$

Therefore, we need to find eigenvalues and eigenfunctions of the Hamiltonian H, i.e. find eigenvalues and eigenfunctions of 2×2 matrix

$$
H=\left(\begin{array}{ll}
h & g \\
g & h
\end{array}\right)
$$

We will also later need to find C_{n}.

To find the eigenvalues E of a matrix we solve characteristic equation

$$
\operatorname{det}(H-E I)=0
$$

$\uparrow\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ identity matrix

$$
\begin{aligned}
& \operatorname{det}(H-E I)=\operatorname{det}\left[\left(\begin{array}{ll}
h & g \\
g & h
\end{array}\right)-\left(\begin{array}{ll}
E & 0 \\
0 & E
\end{array}\right)\right]=\operatorname{det}\left(\begin{array}{cc}
h-E & g \\
g & h-E
\end{array}\right) \\
& =(h-E)^{2}-g^{2}=0 \\
& (h-E-g)(h-E+g)=0 \Rightarrow \\
& E_{1}=h+g \\
& E_{2}=h-g
\end{aligned}
$$

To find the corresponding eigenfunctions, we plug our eigenvalues back into

$$
H|S\rangle_{n}=E_{n}|S\rangle, \quad n=1,2 \quad|S\rangle=\binom{a}{b}
$$

(\#1) $\left(\begin{array}{ll}h & g \\ g & h\end{array}\right)\binom{a}{b}=(h+g)\binom{a}{b}$

$$
\begin{aligned}
& \binom{h \cdot a+g \cdot b}{g \cdot a+h \cdot b}=\binom{(h+g) a}{(h+g) b} \\
& h a+g b=h a+g a \Rightarrow a=b \\
& g a+h b=b b+g b
\end{aligned}
$$

$$
a=b \quad \Rightarrow \quad|s\rangle_{1}=\binom{a}{a}
$$

Normalization gives $\langle s \mid s\rangle=1 \quad\left(a^{*} a^{*}\right)\binom{a}{a}=1$

$$
\begin{aligned}
& 2|a|^{2}=1 \\
& a=\frac{1}{\sqrt{2}}
\end{aligned} \quad \Rightarrow \quad|S\rangle_{1}=\frac{1}{\sqrt{2}}\binom{1}{1} \quad \text { let's call it }|S\rangle_{+} \text {) }
$$

(\#2)

$$
\begin{aligned}
& \left(\begin{array}{ll}
h & g \\
g & h
\end{array}\right)\binom{a}{b}=(h-g)\binom{a}{b} \\
& \binom{h a+g b}{g a+h b}=\binom{(h-g) a}{(h-g) b} \\
& h a+g b=h a-g a \\
& g a+h b=h b-g b \\
& |s\rangle_{2} \equiv|s\rangle_{-}=\binom{a}{-a}
\end{aligned}
$$

Normalization gives $\langle S \mid S\rangle=1 \Rightarrow a=\frac{1}{\sqrt{2}}$

$$
\left|s_{-}\right\rangle=\frac{1}{\sqrt{2}}\binom{1}{-1}
$$

Summary: we got eigenfunction $|S\rangle_{+}=\frac{1}{\sqrt{2}}\binom{1}{1}$ and $\left|S_{-}\right\rangle=\frac{1}{\sqrt{2}}\binom{1}{-1}$ corresponding to eigenvalues $E=h \pm g$.

Now we return to our time-dependent Schrödinger equation and its general solution:

$$
|S\rangle=\sum_{n=1,2} C_{n}|s\rangle_{n} e^{-i E_{n} t / \hbar}
$$

We know $|S\rangle_{n}$ and E_{n} but need to find C_{n}.
As before, we do so using the initial wave function at $t=0: \quad|S(t=0)\rangle=|1\rangle=\binom{1}{0}$.
In this case, we can simply write the representation of $|s(t=0)\rangle$ via $|s\rangle_{ \pm}$:

$$
\begin{aligned}
& |s(t=0)\rangle \equiv|1\rangle=\binom{1}{0}=\frac{1}{2}\binom{1}{1}+\frac{1}{2}\binom{1}{-1} \\
& =\frac{1}{\sqrt{2}}\{\underbrace{\frac{1}{\sqrt{2}}\binom{1}{1}}_{\uparrow}+\underbrace{\frac{1}{\sqrt{2}}\binom{1}{-1}}_{|S\rangle+}\}=\underbrace{\frac{1}{2}}_{\mid S 7}|s\rangle++\frac{1}{\sqrt{2}}|s\rangle_{\uparrow}
\end{aligned}
$$

Alternatively, we could find C_{n} as usual using

$$
\begin{aligned}
& C_{n}=\left\langle S_{n}\right| S(t=0\rangle \\
& C_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & 1
\end{array}\right)\binom{1}{0}=\frac{1}{\sqrt{2}}, \text { etc. }
\end{aligned}
$$

All we do now is plug in $|S\rangle_{n}, C_{n}$, and E_{n} into our general solution:

$$
\left.\left\lvert\, S 7=\frac{1}{\sqrt{2}}\left(e^{-i E_{1} t / h}\left|S 7_{+}+e^{-i E_{2} t / \hbar}\right| S_{-}\right\rangle\right.\right)
$$

$$
|S\rangle=\frac{1}{\sqrt{2}}\left(e^{-i(h+g) t / \hbar}|\delta\rangle++e^{-i(h-g) t / \hbar}|\delta\rangle-\right)
$$

We can simplify it a bit:

$$
\begin{aligned}
& |S\rangle=\frac{1}{2} e^{-i h t / \hbar}\left[e^{-i g t / \hbar}\binom{1}{1}+e^{i g t / \hbar}\binom{1}{-1}\right] \\
& =\frac{1}{2} e^{-i h t / \hbar}\left(e^{-i g t / \hbar}+e^{i g t / \hbar}\right) \\
& \left.|S\rangle=e^{-i g t / \hbar}-e^{i g t / \hbar}\right) \\
& -\binom{\cos (g t / \hbar)}{-i \sin (g t / \hbar)}
\end{aligned}
$$

Note: this problem represents crude model of neutrino oscillation.
State 117 would be electron neutrino and state 127 would represent muon neutrino. If off-diagonal term in the Hamiltonian $g \neq 0$, then electron neutrino can turn with time into muon neutrino and back.

Projection operator
The operator $\hat{p} \equiv|\alpha\rangle\langle\alpha|$, where $|\alpha\rangle$ is a normalized state vector is called projection operator onto the subspace spanned by $|\alpha\rangle$ since it picks out the portion of any other vector that "lies along" $|\alpha\rangle$:

$$
\hat{p}|\beta\rangle=\langle\alpha \mid \beta\rangle|\alpha\rangle .
$$

If $\left\{\left|e_{n}\right\rangle\right\}$ is a discrete orthonormal basis,

$$
\left\langle l_{m} \mid l_{n}\right\rangle=\delta_{m n}
$$

Then

$$
\sum_{n}\left|e_{n}\right\rangle\left\langle e_{n}\right|=1
$$

and

$$
|\alpha\rangle=\sum_{n}\left|e_{n}\right\rangle\left\langle e_{n} \mid \alpha\right\rangle .
$$

Example 2
Consider three-dimensional vector space spanned by orthonormal basis set $117,127,13\rangle .1 \alpha 7$ and $|\beta\rangle$ are given by

$$
\begin{aligned}
& 1 \alpha\rangle=i|17-2| 27-i \mid 37 \\
& |\beta\rangle=i|17+2| 3\rangle
\end{aligned}
$$

(a) Construct $<\beta 1$ (in terms of $<11,<21,<31$).
(b) Find $\langle\beta \mid \alpha\rangle$.
(c) Find matrix elements A_{11} and A_{12} of the operator $\hat{A} \equiv|\alpha\rangle<\beta \mid$ in this basis.

Solution
(a) $|\beta\rangle=i|1\rangle+2|3\rangle \Rightarrow\langle\beta|=-i\langle 1|+2\langle 3|$
(b) $\langle\beta \mid \alpha\rangle=(-i\langle 1|+2\langle 31)(i|1\rangle-2|2\rangle-i|3\rangle)$

$$
=-i \cdot i \underbrace{\langle 1 \mid 1\rangle}_{1}-2 i \underbrace{\langle 3 \mid 3\rangle}_{1}=1-2 i
$$

Note: all other terms like $<1127=0$
since $\langle i \mid j\rangle=\delta_{i j}$ for or thonormal basis set.
(c)

$$
A=\left(\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right)
$$

Example 2
$A_{i j}=\langle i| A|j\rangle \longleftarrow$ matrix element $A_{i j}$

$$
A_{11}=\langle 1| A|1\rangle=\langle 1 \mid \alpha\rangle\langle\beta \mid 1\rangle
$$

$$
A_{12}=\langle 1| A|2\rangle=\langle 1 \mid \alpha\rangle\langle\beta \mid 2\rangle
$$

$$
A_{11}=\langle 1|(i|1\rangle-2|2\rangle-i|3\rangle)(-i\langle 1|+2\langle 3|)|1\rangle
$$

$$
=\underbrace{i\langle 1 \mid 1\rangle}(-i)\langle 1 \mid 1\rangle=1
$$

All other terms are zero.

$$
A_{12}=\langle 1 \mid \alpha\rangle\langle\beta \mid 2\rangle=0 \text { since }\langle\beta \mid 2\rangle=0
$$

Example 3
On the subject of commutators
Show that $\left[x^{n}, p\right]=i \hbar n x^{n-1}$.
Solution
We introduce a trial function f

$$
\begin{aligned}
& {\left[x^{n}, p\right] f=\left\{x^{n} p-p x^{n}\right\} f} \\
& =x^{n}\left(-i \hbar \frac{d f}{d x}\right)+i \hbar \frac{d}{d x}\left(x^{n} f\right) \\
& =-i \hbar x^{n} \frac{d f}{d x}+i \hbar n x^{n-1} f+i \hbar x^{n} \frac{d f}{d x} \\
& =i \hbar n x^{n-1} f \quad \text { for any } f(x) .
\end{aligned}
$$

Therefore,

$$
\left[x^{n}, p\right]=i \hbar n x^{n-1}
$$

