Part 2 Dark matter: what is it?

Overview of searches for dark matter

Summary of dark matter evidence: 85% of matter in the universe is of unknown nature

Normal matter: ~15% of total matter

We know it is out there but we do not know what it is.

What dark matter is not: MACHOS hypothesis have been ruled out

MACHOS: MAssive Compact Halo Objects:

dim stars (white dwarfs, drown dwarfs, neutron stars), black holes, and Jupiter-sized planets,

Searching for MACHOS with gravitational microlensing

http://www.sjsu.edu/people/monika.kress/courses/sci255/

Searching for MACHOS with gravitational microlensing

Results: not enough MACHOS to make dark matter

http://www.sjsu.edu/people/monika.kress/courses/sci255/

What do we know about dark matter?

Mostly have "negative" information from astrophysics and searches for new particles:

- No electric charge
- No colour charge (property of quarks and gluons that is related to the particles' strong interactions)
- No strong self-interaction
- Does not seem to decay: stable, or very long-lived
- Not a particle in the Standard Model
 of particle physics

Approaching dark matter theories

Top down:

Begin with theory motivation (hierarchy problem, strong CP problem.) develop model (SUSY [supersymmetry], axion) look for stable, neutral particle (LSP [light supersymmetric particle], axion)

Bottom up:

Motivated often by specific experimental anomalies, theories constructed. Implications for other experiments (and often SUSY)

Phenomenological: Motivated by considering whether a viable and detectable model could exist of a certain type.

Our most conservative idea for dark matter:

Some exotic particle that we have not yet detected [note: it does not have to be just one particle]

Two most important parameters of such particles

(1) Mass

Measured in electron volts divided by c²: $[1eV/c^2 = 1.782662 \times 10^{-36} \text{ kg}]$ remember energy vs. mass $E = mc^2$, note that c² is usually omitted Examples: mass of proton is $1.67 \times 10^{-27} \text{ kg} = 938 \times 10^6 \text{eV} = 938 \text{ MeV} \sim 1 \text{GeV}$ mass of electron is 0.511 MeV

(2) Strength of interaction with normal matter

Dark matter candidate particle zoo

WIMP: Weakly Interacting Massive Particle

SuperWIMPS: superweakly-interacting massive particles produced in the late decays of other particles

Axion, Peccei–Quinn symmetry

Kaluza-Klein (KK) photon and graviton are from universal extra dimension models Neutralino and gravitino are particles of supersymmetric models WIMPZILLA (nonthermal dark matter)

THE ZOOLOGY OF DARK MATTER

Crazy

Three basic categories of dark matter: Reasonable Weird sometimes also called "normal"

入

(also "obviously wrong")

Slide from Neal Weiner's (New York University) review on dark matter at the 2015 Conference on the Intersections of Particle and Nuclear Physics

Neal Weiner, CIPANP 2015

How to search for dark matter particles

Indirect detection

Search for things dark matter can decay to $\chi \chi \rightarrow e^+ e^-, \, p \overline{p}$

Direct detection

Build a trap for dark matter

 $\chi \: \mathsf{N}
ightarrow \chi \: \mathsf{N}$

Production at LHC

Make dark matter particles

 $p + p \rightarrow \chi + a lot$

How to search for dark matter particles

- 1. Pick you favorite dark matter particle(s)
- 2. Decide how it can be detected (direct detection, indirect detection, produce the particle or a combination of these?)
- 3. Built your detector
- 4. Take measurements and see if you find it or rule it out the entire *"parameter space"*

It is very difficult to completely rule out dark matter theories!

Ruled out theories produce more other theories!

http://westlylafleur.deviantart.com/art/Hundred-Headed-Dragon-328858556

Supersymmetry: WIMPs

Weakly Interacting Massive Particles (WIMPs)

A fraction of a second after the Big Bang the universe was so hot that new particles (and antiparticles) were created and destroyed all the time, just like in a particle accelerator.

As the universe expanded and cooled these particles were no longer created, and eventually the leftovers annihilated or decayed, clearing the universe of these exotic states.

A weakly-interacting particle will not be able to completely annihilate and a residue of these particles will be left filling the universe.

It turns out that a stable particle of mass near 100 GeV and interacting via the weak force (just the kind of particle that particle physicists think exists anyway) will leave just about the right amount of "leftovers" to account for the observed dark matter density!

This class of natural dark matter candidates is generally called **weakly** interacting massive particles (WIMPs).

WHERE DARK MATTER CAME FROM

Big Freeze In the hot, dense early universe, dark n

In the hot, dense early universe, dark matter particles such as WIMPs were created and destroyed in a dynamic equilibrium. As the cosmos expanded, it cooled and eventually was no longer able to create new particles. Those left over became so spread out that they ceased colliding and getting destroyed. For WIMPs, theory makes a firm prediction for the amount of material that survived, which is consistent with observations.

Matter-antimatter annihilation

http://imagine.gsfc.nasa.gov/science/toolbox/gamma_generation.html https://www.learner.org/courses/physics/unit/text.html?unit=1&secNum=7

Charge $\rightarrow -q$ Parity $\vec{r} \rightarrow -\vec{r}$ Time $t \rightarrow -t$ **Discrete Symmetries**

If **CPT** symmetry holds, then T-violation \rightarrow CP-violation

Problems with the Standard Model: Matter – Antimatter asymmetry

Andrei Sakharov (1967)

Need **CP-violation** for matter-antimatter asymmetry

Standard Model CP-violation **is insufficient** to generate observed matter – antimatter asymmetry.

www.research.vt.edu

Matter – Antimatter asymmetry: Need new sources of CP- (T-) violation

SUPERSYMMETRY

SUSY particles

Extended gauge symmetry

Additional spacetime dimensions

www.simonsfoundation.org

Supersymmetry and WIMPs:

The lightest (stable) supersymmetries particle is your dark matter WIMP: neutralino (combination of –inos)

THE BESTIARY

Could shadowy super particles be lurking behind the standard model's observed fundamental particles and forces?

Image credit: Geoff Brumfiel from Nature

The Large Hadron Collider (LHC) CERN (Conseil Européen pour la Recherche Nucléaire)

LHC: **27-kilometre ring** of superconducting magnets with a number of accelerating structures to boost the energy of the particles along the way.

The world's largest and most powerful particle collider: 13 TeV (10¹² eV). The largest, most complex experimental facility ever built. The largest single machine in the world. Cost: 3 billion euro.

The Large Hadron Collider (LHC)

Inside the accelerator, two high-energy particle beams travel at close to the speed of light before they are made to collide.

Kinetic energy of a proton (K)	Speed (%c)	Accelerator				
50 MeV	31.4	Linac 2				
1.4 GeV	91.6	PS Booster				
25 GeV	99.93	PS				
450 GeV	99.9998	SPS				
7 TeV	99.9999991	LHC				
Relationship between kinetic energy and speed of a proton in the CERN machines. The rest mass of the proton is 0.938 GeV/c ²						

Credit: CERN

Searches for SUSY at the LHC

In R-parity is conserved, SUSY particles are produced in pairs and the lightest SUSY particle (LSP) becomes stable

- R=(-1)^{3(B-L)+2s}
- No direct observation of SUSY particles, but only SM particles are reconstructed directly
 - No mass peaks
- LSP escapes the detector undetected producing a missing transverse energy (E_T^{miss})
- Evidence of SUSY is done by establishing an excess of events in some region of phase space
 - Crucial to understand the contribution from SM processes

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: SUSY 2013

Preliminary

 $\int \mathcal{L} dt = (4.6 - 22.9) \text{ fb}^{-1} \qquad \sqrt{s} = 7, 8 \text{ TeV}$

	Model	e, μ, τ, γ	Jets E ⁿ _T	niss ∫£dt[fb	⁻¹] Mass limit	Reference
Inclusive Searches	$ \begin{array}{l} MSUGRA/CMSSM \\ MSUGRA/CMSSM \\ MSUGRA/CMSSM \\ \widetilde{qq}, \widetilde{q} \rightarrow q \widetilde{\chi}_1^0 \\ \widetilde{gg}, \widetilde{g} \rightarrow q \widetilde{q} \widetilde{\chi}_1^0 \\ \widetilde{gg}, \widetilde{g} \rightarrow q q \widetilde{\chi}_1^\pm \rightarrow q q W^\pm \widetilde{\chi}_1^0 \\ \widetilde{gg}, \widetilde{g} \rightarrow q q (\ell \ell / \ell v / v v) \widetilde{\chi}_1^0 \\ GMSB (\widetilde{\ell} \ NLSP) \\ GMSB (\widetilde{\ell} \ NLSP) \\ GGM (bino \ NLSP) \\ GGM (higgsino \ hlSP) \\ GGM (higgsino \ NLSP) \\ GGM (higgsino \ NLSP) \\ GGM (higgsino \ NLSP) \\ Gravitino \ LSP \end{array} $	$\begin{array}{c} 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu \left(Z \right) \\ 0 \end{array}$	2-6 jets Y 3-6 jets Y 2-6 jets Y 2-6 jets Y 2-6 jets Y 2-6 jets Y 3-6 jets Y 0-3 jets Z 2-4 jets Y 0-2 jets Y 0-2 jets Y 0-3 jets Y 0-3 jets Y 0-3 jets Y 0-3 jets Y	Yes 20.3 Yes 4.7 Yes 4.7 Yes 4.8 Yes 4.8 Yes 4.8 Yes 5.8 Yes 10.5	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 1308.1841 ATLAS-CONF-2013-047 ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 ATLAS-CONF-2013-089 1208.4688 ATLAS-CONF-2013-026 1209.0753 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 ATLAS-CONF-2012-147
3 ^{ra} gen. <i>ἒ med.</i>	$ \begin{array}{c} \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{0}^{0} \\ \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1} \\ \tilde{g} \rightarrow b \bar{t} \tilde{\chi}_{1}^{+} \end{array} $	0 0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 b Y 7-10 jets Y 3 b Y 3 b Y	 'es 20.1 'es 20.3 'es 20.1 'es 20.1 	ğ 1.2 TeV m(x̃ ₁ ⁰)<600 GeV ğ 1.1 TeV m(x̃ ₁ ⁰)<350 GeV	ATLAS-CONF-2013-061 1308.1841 ATLAS-CONF-2013-061 ATLAS-CONF-2013-061
3 rd gen. squarks direct production	$\begin{split} \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow b\tilde{\chi}_{1}^{0} \\ \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow t\tilde{\chi}_{1}^{\pm} \\ \tilde{t}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow t\tilde{\chi}_{1}^{\pm} \\ \tilde{t}_{1}\tilde{\tau}_{1}(\text{light}), \tilde{\tau}_{1} \rightarrow b\tilde{\chi}_{1}^{\pm} \\ \tilde{\tau}_{1}\tilde{\tau}_{1}(\text{light}), \tilde{\tau}_{1} \rightarrow Wb\tilde{\chi}_{1}^{0} \\ \tilde{\tau}_{1}\tilde{\tau}_{1}(\text{medium}), \tilde{\tau}_{1} \rightarrow t\tilde{\chi}_{0}^{0} \\ \tilde{\tau}_{1}\tilde{\tau}_{1}(\text{medium}), \tilde{\tau}_{1} \rightarrow b\tilde{\chi}_{1}^{\pm} \\ \tilde{\tau}_{1}\tilde{\tau}_{1}(\text{heavy}), \tilde{\tau}_{1} \rightarrow t\tilde{\chi}_{1}^{0} \\ \tilde{\tau}_{1}\tilde{\tau}_{1}(\text{neavy}), \tilde{\tau}_{1} \rightarrow t\tilde{\chi}_{1}^{0} \\ \tilde{\tau}_{1}\tilde{\tau}_{1}(\text{neaval}), \tilde{\tau}_{1} \rightarrow t\tilde{\chi}_{1}^{0} \\ \tilde{\tau}_{1}\tilde{\tau}_{1}(\text{natural GMSB}) \\ \tilde{\tau}_{2}\tilde{\tau}_{2}, \tilde{\tau}_{2} \rightarrow \tilde{\tau}_{1} + Z \end{split}$	$\begin{array}{c} 0 \\ 2 \ e, \mu \ (SS) \\ 1-2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 0 \\ 1 \ c, \mu \\ 0 \\ 0 \\ 2 \ e, \mu \ (Z) \\ 3 \ e, \mu \ (Z) \end{array}$	2 b Y 0-3 b Y 1-2 b Y 0-2 jets Y 2 jets Y 2 b Y 1 b Y 0 no-jet/c-tag Y 1 b Y 1 b Y 1 b Y 1 b Y	Yes 20.1 Yes 20.7 Yes 4.7 Yes 20.3 Yes 20.3 Yes 20.1 Yes 20.7 Yes 20.7 Yes 20.7 Yes 20.5 Yes 20.7 Yes 20.7 Yes 20.7	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1308.2631 ATLAS-CONF-2013-007 1208.4305, 1209.2102 ATLAS-CONF-2013-048 ATLAS-CONF-2013-065 1308.2631 ATLAS-CONF-2013-037 ATLAS-CONF-2013-024 ATLAS-CONF-2013-025 ATLAS-CONF-2013-025
EW direct	$ \begin{array}{c} \tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu (\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau} \nu (\tau \tilde{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L} \nu \tilde{\ell}_{L} \ell (\tilde{\nu}\nu), \ell \tilde{\nu} \tilde{\ell}_{L} \ell (\tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} Z \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{0} \end{array} $	2 e, µ 2 e, µ 2 τ 3 e, µ 3 e, µ 1 e, µ	0 Y 0 Y - Y 0 Y 0 Y 2 b Y	Yes 20.3 Yes 20.3 Yes 20.7 Yes 20.7 Yes 20.7 Yes 20.7 Yes 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ATLAS-CONF-2013-049 ATLAS-CONF-2013-049 ATLAS-CONF-2013-028 ATLAS-CONF-2013-035 ATLAS-CONF-2013-035 ATLAS-CONF-2013-093
Long-lived particles	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$ Stable, stopped \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu})_+ \tau(\tilde{e}, \tilde{\mu})_+ \tau(\tilde$	Disapp. trk 0 e, μ) 1-2 μ 2 γ 1 μ , displ. vtx	1 jet Y 1-5 jets Y - - Y	Yes 20.3 Yes 22.9 - 15.9 Yes 4.7 - 20.3	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ATLAS-CONF-2013-069 ATLAS-CONF-2013-057 ATLAS-CONF-2013-058 1304.6310 ATLAS-CONF-2013-092
RPV	$ \begin{array}{c} LFV \ pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e + \mu \\ LFV \ pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e(\mu) + \tau \\ Bilinear \ RPV \ CMSSM \\ \tilde{x}_{1}^{+} \tilde{x}_{1}^{-}, \tilde{x}_{1}^{+} \rightarrow W \tilde{x}_{0}^{0}, \tilde{x}_{1}^{0} \rightarrow ee\tilde{v}_{\mu}, e\mu \tilde{v} \\ \tilde{x}_{1}^{+} \tilde{x}_{1}^{-}, \tilde{x}_{1}^{+} \rightarrow W \tilde{x}_{0}^{0}, \tilde{x}_{1}^{0} \rightarrow er\tilde{v}_{e}, er\tilde{v} \\ \tilde{g} \rightarrow qqq \\ \tilde{g} \rightarrow \tilde{t}_{1}t, \ \tilde{t}_{1} \rightarrow bs \end{array} $	$2 e, \mu 1 e, \mu + \tau 1 e, \mu 1 e, \mu 3 e, \mu \tau 0 2 e, \mu (SS)$	7 jets Y Y Y 6-7 jets 0-3 b Y	- 4.6 - 4.6 (es 4.7 (es 20.7 (es 20.7 - 20.3 (es 20.7	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1212.1272 1212.1272 ATLAS-CONF-2012-140 ATLAS-CONF-2013-036 ATLAS-CONF-2013-036 ATLAS-CONF-2013-091 ATLAS-CONF-2013-007
Other	Scalar gluon pair, sgluon $\rightarrow q\bar{q}$ Scalar gluon pair, sgluon $\rightarrow t\bar{t}$ WIMP interaction (D5, Dirac χ)	0 2 <i>e</i> ,μ(SS) 0	4 jets 1 <i>b</i> Y mono-jet Y	- 4.6 /es 14.3 /es 10.5	sgluon 100-287 GeV incl. limit from 1110.2693 sgluon 800 GeV m(χ)<80 GeV, limit of <687 GeV for D8	1210.4826 ATLAS-CONF-2013-051 ATLAS-CONF-2012-147
	√s = 7 TeV full data p	$\sqrt{s} = 8$ TeV partial data	$\sqrt{s} = 8$ Te full data	eV a	10^{-1} 1 Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: SUSY 2013

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

ATLAS Preliminary

How to search for dark matter particles

Indirect detection

Search for things dark matter can decay to $\chi \chi \rightarrow e^+ e^-, \, p \overline{p}$

Direct detection

Build a trap for dark matter

 $\chi \: \mathsf{N}
ightarrow \chi \: \mathsf{N}$

Production at LHC

Make dark matter particles

 $p + p \rightarrow \chi + a lot$

There should be dark matter on Earth for us to detect

Earth is moving through dark matter halo (dark matter not moving)

Earth's orbital speed around the Sun is 30 km/s

http://www.hep.ucl.ac.uk/darkMatter/

Direct detection: How to detects WIMPs?

http://cdms.berkeley.edu/Education/DMpages/essays/essays/essays/science/images/NucRecoilAtoms.jpg

- Particles of dark matter, though reluctant to interact with ordinary atoms, should still do so occasionally. When such a particle ricochets off an atomic nucleus, the nucleus recoils, hits surrounding atoms and releases
 energy in the form of heat or light.
- The real trick is to distinguish this energy release from the effects of more prosaic processes, such as radioactive decay. Such effects may account for the only reported detection of dark matter to date.

Detection principle:

Measure the recoil energy imparted to detector nuclei through WIMP-nucleon collisions.

http://luxdarkmatter.org/talks/20120919_Dark_Matter_LUX_Outreach_Fiorucci.pdf

Scintillation detectors

Cryogenic detectors

Dark Matter (mass ~ GeV – TeV)

Germanium

honons

recoil energy

(tens of keV)

 χ^0

E~3V

Principle: Looks for slight pulses of light triggered by dark matter passing through, liquid xenon or argon

Principle: Looks for slight pulses of heat generated by dark matter passing through a supercooled crystal. To understand how heat spreads through a material, consider that heat — as well as sound — is actually the motion or vibration of atoms and molecules.

Low-frequency vibrations correspond to sound, while higher frequencies correspond to heat. At each frequency, quantum mechanics principles dictate that the vibrational energy must be a multiple of a basic amount of energy, called a quantum, that is proportional to the frequency.

A **phonon** is a definite discrete unit or quantum of vibrational mechanical energy, just as a photon is a quantum of electromagnetic or light energy.

Direct detection experiments

Need to shield dark matter detector from cosmic rays:

Go really deep underground.

Underground laboratories

Cryogenic Dark Matter Search (CDMS)

The CDMS experiment has pioneered the use of cryogenic silicon and germanium detectors to perform sensitive searches for dark matter.

The recoiling nucleus from a dark matter interaction produces crystal lattice vibrations (phonons) and also electron-hole pairs ("e" and "h").

The phonon and charge signals are captured by electrodes applied to the face of the crystal using photolithography.

These detectors provide unique capabilities for background rejection and offer unmatched sensitivity for the very small energy deposits associated with low-mass dark matter interactions.

Cryogenic Dark Matter Search (CDMS)

Phonons reaching one face of the detector face break Cooper pairs (weakly bound electron pairs) in a thin superconducting aluminum layer; the resulting quasiparticles heat a transition-edge sensor bonded to the aluminum layer, causing a measurable momentary change in its resistance R(t).

Charge carriers drift out to one face of the detector under the influence of a small electric field, and are detected with a sensitive amplifer [signal shown as Q(t)].

In reality, the readout elements on both sides are highly segmented, and the relative timing of the ionization and phonon signals recorded, to provide good event localization.

Scintillation detectors The Large Underground Xenon (LUX) Experiment

https://en.wikipedia.org/wiki/File:LUXEvent.pdf

The Large Underground Xenon (LUX) Experiment

Particle interactions inside the LUX detector produce 175 nm ultraviolet photons and electrons.

The photons (γ), moving at the speed of light, are quickly detected by the photomultiplier tubes. This photon signal is called S1.

The Large Underground Xenon (LUX) Experiment

An electric field in the liquid xenon drifts the electrons towards the liquid surface.

A much higher electric field above the liquid surface pulls the electrons out of the liquid and into the gas, where they produce electroluminescence photons (in the same way that neon sign produces light).

The electroluminescence photons are detected by the photomultiplier tubes as the S2 signal.

A single particle interaction in the liquid xenon can be identified by the pair of an S1 and an S2 signal. The detector is isolated from background particles by a surrounding water tank and above earth shielding that reduce cosmic rays and radiation interacting with the xenon.

The LUX Experiment

Access Tunnel to the Davis Underground Laboratory, Dec 2011

http://luxdarkmatter.org/talks/20120919_Dark_Matter_LUX_Outreach_Fiorucci.pdf

Future of Sanford Lab

http://luxdarkmatter.org/talks/20120919_Dark_Matter_LUX_Outreach_Fiorucci.pdf 58

Background sources

- Natural **U**, **Th** chains and ⁴⁰**K**
 - Electronic recoils: β 's and γ 's
 - α 's: high energy but still BG in some experiments
- **Neutrons** → nuclear recoils
 - (α, n) reactions and spontaneous fission
 - From muon showers after a spallation process
- Rn and ⁸⁵Kr
 - Rn emanation from various detector materials
 - Kr from the air (⁸⁵Kr produced at nuclear power plants)

→ Background suppression/removal 1 part per quadrillion 10¹⁵

- Material screening and selection
- Removal of Kr or Rn with dedicated devices
- Shielding (underground lab, detector shield, active veto)

pure Xe!

A history and future projections of direct detection limits

LB, Physics of the Dark Universe 4, 2014

How to improve WIMP direct detection experiments?

How to improve WIMP direct detection experiments?

The WIMP landscape: prospects

