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The electric quadrupole moments of the metastable nd3/2 and nd5/2 states of Ca+, Sr+, and Ba+ are calculated
using the relativistic all-order method including all single, double, and partial triple excitations of the Dirac-
Hartree-Fock wave function to provide recommended values for the cases where no experimental data are
available. The contributions of all nonlinear single and double terms are also calculated for the case of Ca+ for
comparison of our approach with results of the coupled-cluster method with singles, doubles, and perturbative
triples. Third-order many-body perturbation theory is used to evaluate the contributions of high partial waves
and the Breit interaction. The remaining omitted correlation corrections are estimated as well. An extensive
study of the uncertainty of our calculations is carried out to establish the accuracy of our recommended values
as 0.5–1 % depending on the particular ion. A comprehensive comparison of our results with other theoretical
values and experimental results is carried out. Our result for the quadrupole moment of the 3d5/2 state of the
Ca+ ion, 1.849�17�ea0

2, is in agreement with the most precise recent measurement 1.83�1�ea0
2 by Roos et al.

�Nature �London� 443, 316 �2006��.
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I. INTRODUCTION

Frequency standards based on optical transitions of
trapped ions have the potential to reach a systematic frac-
tional uncertainty on the order of 10−18 �1�. The ability to
develop more precise optical frequency standards will open
ways to improve global positioning system measurements
and tracking of deep-space probes and perform more accu-
rate measurements of physical constants and tests of funda-
mental physics such as searches for nonlinearity of quantum
mechanics, gravitational waves, etc. Some of the promising
candidates for such ultrahigh-precision frequency standards
with trapped ions are 27Al+ �2,3�, 199Hg+ �4,5�, 171Yb+ �6,7�,
87Sr+ �8,9�, 43Ca+ �10�, 115In+ �11�, and 137Ba+. One of the
largest sources of systematic errors in such frequency stan-
dards with monovalent ions is due to interaction of the quad-
rupole moments of metastable states with stray electric field
gradients �12,13�. The electric quadrupole moments of the
metastable states are hard to calculate accurately even for the
simplest monovalent systems owing to the large correlation
corrections �over 30% for Ca+�. The relativistic
configuration-interaction �RCI� method with a multiconfigu-
ration Dirac-Fock orbital basis was used by Itano �14� to
calculate relevant quadrupole moments in Ca+, Sr+, Ba+,
Yb+, Hg+, and Au. The RCI results agreed with available
measurement within 10%. The relativistic coupled-cluster
calculations of quadrupole moments of metastable nd states
were carried out by Sur et al. �15� for Ca+, Sr+, and Ba+ and
by Sahoo �16� for Ba+. These calculations yielded results 5%

and 13% higher than the recent measurements of Ca+ �17�
and Sr+ �18� quadrupole moments, respectively. Mitroy and
Zhang �19,20� calculated the quadrupole moments of the
3d5/2 state in Ca+ and the 4d5/2 state in Sr+ by diagonalizing
a semiempirical Hamiltonian in a large-dimension single-
electron basis. Their values are in good agreement with the
experiment. However, they noted that their particular defini-
tion of the polarization potential may lead to a possible prob-
lem with the accuracy of properties of these nd states calcu-
lated using this method �19,20�. Large differences between
theoretical calculations and experimental values, especially
the 5% discrepancy between the recent precise measurement
of the 3d5/2 state quadrupole moment of Ca+ by Roos et al.
�17� and values of coupled-cluster calculations with singles,
doubles, and partial triples �CCSD�T�� from �15�, and the
consequent need for comprehensive analysis of the theoreti-
cal uncertainties have in part motivated this work.

In this paper, we present relativistic all-order calculations
of the electric quadrupole moments of the nd3/2 and nd5/2
states of Ca+, Sr+, and Ba+ ions. The relativistic all-order
method is one of the most accurate methods used for the
calculation of atomic properties of monovalent systems �see
Ref. �21� for a review and references therein�. The lifetimes
of the 3d levels in Ca+ calculated in this approach and esti-
mated to be accurate to 1% were found to be in agreement
with the high-precision experiment �22�. The calculation of
the nd quadrupole moments is very similar to the calculation
of the nd lifetimes, so similar accuracy is expected. The long
lifetimes of the metastable nd states of these ions also make
these systems well suited for the study of quantum-
information processing and quantum simulation �23,24�.

The atomic properties of Ba+ are also of particular interest
owing to the prospects for studying parity nonconservation
with a single trapped ion �25�. Progress on related spectros-
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copy with a single Ba+ ion is reported in �26,27�, and preci-
sion measurements of light shifts in a single trapped Ba+ ion
have been reported in �28�.

Another motivation for this work is the opportunity to
evaluate the importance of the nonlinear terms as well as
triple and higher excitations in the coupled-cluster approach.
It has been indicated in Refs. �29,30� that nonlinear terms
may be relatively large and significantly cancel with triple
and higher-excitation terms that are not included in the
CCSD�T� calculations of Ref. �15� or all-order single,
double, and partial triple �SDpT� approach �21�. In this work,
we include all nonlinear terms at the single-double �SD�
level and evaluate triple and higher-excitation corrections be-
yond CCSD�T� or SDpT treatments for Ca+. Our calculations
demonstrate significant cancellation between these terms.
Our results in part explain the discrepancy of previous high-
precision calculations with the Ca+ experiment and represent
the most complete calculation to date to our knowledge. We
also present a detailed analysis of the uncertainty of our cal-
culations.

II. METHOD

The electric quadrupole moment ���J� of an atom in
electronic state ��J� is defined as the diagonal matrix element
of the q=0 component of the electric quadrupole operator Q
in a spherical basis

���J� = ����JMJ��Q0����JMJ�� , �1�

with the magnetic quantum number MJ taken to be equal to
its maximum value, MJ=J �14�. Applying the Wigner-Eckart
theorem and using the analytical expression for the relevant
3-j coefficient �31� allows us to express the quadrupole mo-
ment via the reduced matrix element of the quadrupole op-
erator as

���J� =
�2J�!

��2J − 2�!�2J + 3�!
����J�	Q	���J�� , �2�

where the electric quadrupole operator Q is represented in
second quantization as a one-body operator

Q = 

ij

qijai
†aj . �3�

Here, ai
† and ai are the creation and annihilation operators.

In the coupled-cluster method, the exact many-body wave
function ���J� is represented in the form �32�

��� = exp�S����0�� , �4�

where ���0�� is the lowest-order wave function. We have
omitted the indices ��J� in this equation and formulas below
for convenience. The operator S for an N-electron atom con-
sists of “cluster” contributions from one-electron, two-
electron, ¯, N-electron excitations of the lowest-order wave
function ���0��:

S = S1 + S2 + ¯ + SN. �5�

The expansion of the exponential in Eq. �4� in terms of the
n-body excitations Sn gives

��� = �1 + S1 + S2 +
1

2
S1

2 + S1S2 +
1

2
S2

2 + ¯ ����0�� . �6�

In the linearized coupled-cluster method, only linear terms
are considered, and the wave function takes the form

��� = �1 + S1 + S2 + S3 + ¯ + SN����0�� . �7�

We note that the contributions from the nonlinear terms are
expected to be relatively small, but the computational com-
plexity and time increases significantly with their addition in
the present approach �33�. The relativistic all-order single-
double method is the linearized coupled-cluster method re-
stricted to single and double excitations only, with the wave
function given by

��SD� = �1 + S1 + S2����0��

= �1 + 

ma

�maam
† aa + 


m�v
�mvam

† av

+
1

2 

mnab

�mnabam
† an

†abaa + 

mna

�mnvaam
† an

†aaav����0�� ,

�8�

where we take frozen-core Dirac-Hartree-Fock �DHF� wave
function to be the lowest-order wave function ���0��. The
indices m and n designate excited states while indices a and
b designate core states; the index v labels the valence elec-
tron. The equations for the single-excitation coefficients �ma,
�mv, double-excitation coefficients �mnab, �mnva, and the cor-
responding correlation core and valence energies �Ecore, �Ev
are solved iteratively in a finite basis set. The finite basis set
used in our calculations consists of single-particle orbitals
which are linear combinations of B splines �34� constrained
to a spherical cavity.

The all-order SDpT method is an extension of the SD
method in which the valence part of the linear triple-
excitation term S3 is added to the wave function:

��SDpT� = ��SD� +
1

6 

mnrab

�mnrvabam
† an

†ar
†abaaav���0�� ,

�9�

where ��SD� is given by Eq. �8�. The dominant part of S3 is
treated perturbatively, i.e., its effect on the valence energies
�Ev and single-excitation coefficients �mv is calculated, but
the equations for the triple-excitation coefficients �mnrvab are
not iterated. A detailed description of the SD and SDpT
methods is given in Refs. �21,35,36�.

We carry out both SD and SDpT calculations in this work
to establish the size of the triple corrections in the perturba-
tive approach. The CCSD�T� method used in calculation of
the quadrupole moments in Refs. �15,16� also includes the
triple excitations perturbatively even though the particular
terms that are considered somewhat differ.
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In this work, we also carry out the all-order calculation
that includes all nonlinear terms that arise from single- and
double-excitation terms S1 and S2 for the case of Ca+. There
are only six of such terms that can contribute to the equations
for single- and double-excitation coefficients, and the com-
plete coupled-cluster single-double wave function is then
written as

��CCSD� = exp�S1 + S2����0��

= ��SD� + �1

2
S1

2 + S1S2 +
1

2
S2

2 +
1

6
S1

3 +
1

2
S1

2S2

+
1

24
S1

4����0�� , �10�

where ��SD� is given by Eq. �8�. The complete formulas for
the CCSD equations are given in Ref. �33�. Our approach
allows us to explicitly calculate the contribution of the non-
linear terms to the quadrupole moments as the difference of
the results obtained in the CCSD and SD approaches.

The matrix element of any one-body operator Z in the
all-order method is obtained as

Zvw =
��v�Z��w�

���v��v���w��w�
. �11�

For nonscalar operators, this expression becomes

Zvw =
Zval

��1 + Nv��1 + Nw�
, �12�

where the expression for the numerator of Eq. �12� derived
with the ��SD� wave function consists of the sum of the DHF
matrix element zwv and 20 other terms Z�k�, k=a , . . . , t. These
terms and the normalization terms Nv are linear or quadratic
functions of the excitation coefficients �ma, �mv, �mnab, and
�mnva. The complete expression for the matrix elements can
be found in �37�. The same expression �Eq. �12�� for the
matrix elements is used in all calculations in this work.

We carry out three different ab initio calculations of the
quadrupole matrix elements. In the first one, all excitation
coefficients are obtained in the SD approach �Eq. �8��, in the
second one they are obtained in the SDpT approach �Eq. �9��,
and in the third one �carried out for Ca+� the excitation co-
efficients are obtained in the CCSD approach �Eq. �10��. We
refer to these results as SD, SDpT, and CCSD values in the
text and tables below.

While the numerator of Eq. �12� contains 20 correlation
terms, only one term is overwhelmingly dominant for the
quadrupole moments considered in this work, contributing
over 90% of the total correlation correction. Following the
notation of Ref. �37�, this is the term Z�c� that is equal in the
case of the diagonal quadrupole matrix element to

Z�c� = 2

m

qvm�mv, �13�

where the sum over m ranges over all excited basis set states.
The lowest-order DHF matrix elements qij of the quadrupole
operator are given by

qij = �i	C�2�	j�
0

�

r2�gi�r�gj�r� + f i�r�f j�r��dr , �14�

where C�2� is the normalized spherical harmonic of rank 2
and gi, f i are large and small components of the Dirac wave
function, respectively. The �mv are single-valence excitation
coefficients calculated in either SD �Eq. �8��, SDpT �Eq. �9��,
or CCSD �Eq. �10�� approximations as described above.
Therefore, evaluation of the omitted higher-order corrections
to �mv provides an estimate of the dominant part of the miss-
ing contributions in each approximation. These excitation co-
efficients are closely related to the correlation energy �Ev. If
we introduce the self-energy operator �also referred to as the
correlation potential in some works� �mv as

�mv = �	v − 	m + �Ev��mv, �15�

where 	i is the DHF energy of the state i, then the correlation
energy will correspond to the diagonal term �vv. Therefore,
the omitted correlation correction can be estimated by adjust-
ing the single-excitation coefficients �mv to the experimen-
tally well-known value of the valence correlation energy, and
then recalculating the matrix elements using Eq. �12� with
the modified coefficients �35�

�mv� = �mv
�Ev

expt

�Ev
theory . �16�

�Ev
expt is defined as the experimental energy �38� minus the

lowest-order DHF energy 	v. The theoretical correlation en-
ergy is somewhat different in the SD, SDpT, and CCSD ap-
proaches. Therefore, this scaling procedure has to be con-
ducted separately for each of these three calculations with
�Ev

theory taken to be �Ev
SD, �Ev

SDpT, and �Ev
CCSD, respectively.

We refer to the results of these calculations as SDsc, SDpTsc,
and CCSDsc values.

Before discussing the final results of our calculations, we
describe the calculation of two other corrections that need to
be accounted for in the ab initio SD, SDpT, and CCSD cal-
culations. Any sum over the excited states in the calculation
of either the excitation coefficients or matrix elements using
Eq. �12� involve a sum over the principal quantum number,
calculated essentially exactly, and the sum over the partial
waves, which needs to be truncated after some value lmax
�see the sum over m in Eq. �13� for an example�. In all of our
all-order calculations, we chose lmax=6. We find that the con-
tributions from higher partial waves are small but significant
and should not be omitted at the present level of accuracy.
The size of the contribution of the higher partial waves may
also shed some light on the disagreement of some previous
calculations with experiment.

To evaluate this contribution, we first carried out a third-
order many-body perturbation theory �MBPT� calculation
with the same basis set and lmax as the all-order calculations,
and then performed the same calculation with larger basis set
and larger lmax. A detailed description of the third-order
MBPT method is given in Ref. �39�.

The results of the third-order calculation with increasing
values of lmax for the quadrupole moments of Ca+ are given
in Table I. While the total contribution of the l=7,8 partial
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waves is rather substantial, 0.6%, contributions of even
higher partial waves are small. We truncated the sum after
l=12, with the expected uncertainty of this truncation being
well below our final accuracy. The difference between the
MBPT calculations with lmax=6 and 12 is taken to be the
correction for the contribution of higher partial waves and is
added to the ab initio all-order results.

We have also evaluated the total contribution of the l
=5,6 partial waves to establish its size, and found it to be
3%. Moreover, the inclusion of a larger number of partial
waves reduces the values of the quadruple moments since the
term Z�c� contributes with a sign opposite to that of the
lowest-order value. The inclusion of a larger number of par-
tial waves increases the absolute value of the correlation cor-
rection leading to lower total final values. Therefore, omit-
ting the contributions of higher partial waves or exclusion of
such orbitals from the basis set in other calculations may
result in an overestimation of the quadrupole moments by a
few percent.

We also investigated the effect of the Breit interaction,
which arises due to exchange of a virtual photon between
atomic electrons and can be written as

Bij = −
1

rij
�i · � j +

1

2rij
��i · � j − ��i · r̂ij��� j · r̂ij�� , �17�

where �i are the Dirac matrices. This correction includes
instantaneous magnetic interaction between Dirac currents
�the first term� and the retardation correction to the electric

interaction �the second term�. In order to calculate the Breit
correction to the quadrupole matrix elements, we modify the
generation of the B-spline basis set to intrinsically include
the Breit interaction on the same footing as the Coulomb
interaction, and repeat the third-order calculation with the
modified basis set. The difference between the new values
and the original third-order calculation is taken to be the
correction due to Breit interaction. This contribution is listed
in the last column of Table I. In second quantization, the
Breit interaction operator in a normal form is separated into
a one-body and a two-body part �40�. The two-body Breit
contribution is omitted in our approach. The total Breit cor-
rections are small and are below the estimated uncertainty of
our theoretical values. Therefore, the possible uncertainty in-
troduced by the omission of the two-body Breit correction is
negligible. In fact, we find that most of the Breit correction
arises at the DHF level.

III. RESULTS AND DISCUSSION

The results of our calculations of the quadrupole moments
of the metastable nd3/2 and nd5/2 states of Ca+, Sr+, and Ba+

ions are summarized in Table II, where we list the lowest-
order DHF, third-order MBPT, all-order SD and SDpT ab
initio, and corresponding all-order scaled values calculated
as described in Sec. II. In the case of Ca+, we also list the
results of our CCSD and scaled CCSD calculations. The ab
initio values contain the corrections for the higher partial
wave contributions and Breit interaction. These corrections
do not need to be included into the scaled results as that will
lead to double counting of these effects. We take the scaled
SD numbers as the final values based on the comparisons of
similar calculations in alkali-metal atoms with experiment
�see Refs. �41–45� and references therein�.

We take the maximum difference between the final values
and the SDpT ab initio, SDpT scaled �SDpTsc�, and CCSD
scaled �CCSDsc� values to be the uncertainty of the dominant
contribution. We assume that any remaining uncertainty does
not exceed the uncertainty of the dominant term and take it
to be equal to the uncertainty in the dominant term evaluated
as described above. The two uncertainties are added in
quadrature to obtain the final estimate of the uncertainty of
our values.

TABLE I. Contributions of high partial waves and Breit inter-
action to the electric quadrupole moments of Ca+ calculated using
third-order many-body perturbation theory; lmax is the highest num-
ber of partial waves included in the particular calculation. All val-
ues are given in atomic units.

State

lmax

l=7, . . . ,12 Breit6 8 10 12

3d3/2 1.134 1.127 1.124 1.123 −0.011 −0.001

3d5/2 1.628 1.617 1.614 1.612 −0.015 −0.003

TABLE II. Electric quadrupole moments of Ca+, Sr+, and Ba+ calculated using different approximations:
Dirac-Hartree-Fock �DHF�, third-order many-body perturbation theory �MBPT�, single-double all-order
method �SD�, and single-double all-order method including partial triple-excitation contributions �SDpT�; the
label “sc” indicates the corresponding scaled values. The results of the full single-double couple-cluster
calculation for Ca+ are listed in the column labeled CCSD; the corresponding scaled values are listed in the
column CCSDsc. All values are given in atomic units.

Ion State DHF MBPT SD SDpT SDsc SDpTsc CCSD CCSDsc Final

Ca+ 3d3/2 1.712 1.122 1.245 1.282 1.289 1.281 1.271 1.292 1.289�11�
3d5/2 2.451 1.610 1.785 1.837 1.849 1.836 1.822 1.851 1.849�17�

Sr+ 4d3/2 2.469 1.876 1.987 2.021 2.029 2.020 2.029�12�
4d5/2 3.559 2.721 2.876 2.922 2.935 2.923 2.935�17�

Ba+ 5d3/2 2.732 2.086 2.217 2.260 2.256 2.248 2.256�11�
5d5/2 3.994 3.087 3.263 3.323 3.319 3.308 3.319�15�
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We make several conclusions from our results �all the
percentages are given for Ca+, but the general trends are the
same for all ions considered in this work�.

�1� The triple contributions included in the perturbative
approach contribute about 3% and increase the values of the
quadrupole moments.

�2� The nonlinear terms contribute about 2% and also in-
crease the values of the quadrupole moments.

�3� While the SD, SDpT, and CCSD results vary by a few
percent, the addition of the estimated omitted correlation cor-
rection carried out according to Eq. �16�, brings all these
results to very close agreement providing additional valida-
tion of this procedure.

�4� The linearized SDsc and complete coupled-cluster
CCSDsc scaled results are nearly exactly the same, with the
differences being well below our estimated uncertainty.
Therefore, we found it unnecessary to carry out CCSD cal-
culations for Sr+ and Ba+.

�5� We confirm that nonlinear terms strongly cancel with
the triple- and higher-excitation contributions not included in
the perturbative approach. As a result, the CCSD�T� method
used in Refs. �15,16� that includes both nonlinear terms and
triple excitations in the perturbative approach only is ex-
pected to yield results a few percent higher than the experi-
mental values.

In Table III, we compare our final values with other cal-
culations and available experimental results. We note that our
calculation is the most complete one at the present time. The
J-independent moments, i.e., the values with the all angular
factors divided out, can be obtained by multiplying our re-
sults in Table III by 5 and 7 /2 for the nd3/2 and nd5/2 states,
respectively, according to Eq. �1�.

Our values are systematically lower than the results of
relativistic configuration-interaction calculation carried out
with a multiconfiguration Dirac-Fock orbital basis by Itano
�14�. As we noted above, high partial waves �l
4� contrib-
ute significantly �about 4%� to the quadrupole moments and
reduce the values. Therefore, the restriction of the excitations
to mostly low-l orbitals in Ref. �14� is expected to lead to
higher values in RCI calculations. The relativistic coupled-
cluster CCSD�T� results by Sur et al. �15� for Ca+, Sr+, and

Ba+ and by Sahoo �16� for Ba+ are also systematically lower
than our values, with the exception of the 4d5/2 Sr+ quadru-
pole moment, which is in agreement with our value. It is
unclear why this one value compares differently. Since this
particular value was the focus of the work �15�, perhaps it
was treated differently from the other cases. As we noted
above, we expect the CCSD�T� results of Refs. �15,16� to be
a few percent too high owing to the cancellation of the non-
linear terms and higher-excitation terms not included in
CCSD�T� approach. Another possible issue is the treatment
of the high partial wave contributions. While the tests of
various basis sets were conducted in Ref. �15�, it is not stated
how high partial waves were considered. We note that the
implementation of the coupled-cluster method in Refs.
�15,16� is significantly different from ours and is more
closely related to the quantum chemistry calculations.

The results of Mitroy and Zhang �19,20� calculated by
diagonalizing a semiempirical Hamiltonian in a large-
dimension single-electron basis are in good agreement with
experiment. Our analysis of the correlation correction is con-
sistent with such results. We demonstrated in Sec. II that the
dominant part of the correlation correction to quadrupole
matrix elements comes from the term containing essentially
the correlation potential �vm that is closely related to the
correlation energy. Since the cutoff function in the semi-
empirical potential used in Refs. �19,20� is adjusted to repro-
duce experimental binding energies, it appears to be a good
representation for this application.

Our result for the 3d5/2 Ca+ quadrupole moment,
1.849�17�ea0

2, agrees within the quoted uncertainties with the
recent high-precision measurement 1.83�1�ea0

2 reported by
Roos et al. in Ref. �17� that was carried out using a
decoherence-free subspace with specially designed entangled
states of trapped ions. We also verify �by varying the nuclear
parameter� that our value is not dependent on the particular
isotope within our accuracy. Our result for the Sr+ 4d5/2
quadrupole moment 2.935�17�ea0

2 is in good agreement �just
outside the upper 1� bound� with experimental value
2.6�3�ea0

2 by Barwood et al. �18� measured with a single
laser-cooled ion confined in an end cap trap with variable dc
quadrupole potential.

IV. CONCLUSION

In summary, we performed a relativistic coupled-cluster
calculation of the electric quadrupole moments for the nd3/2
and nd5/2 states of Ca+, Sr+, and Ba+ ions. Our analysis of
various contributions in part explains the discrepancy of pre-
vious high-precision theory with experiment. We also present
detailed evaluation of the uncertainty of our results and pro-
vide recommended values for the cases where no precision
experiments are available. Our result for the quadrupole mo-
ment of the 3d5/2 state of the Ca+ ion, 1.849�17�ea0

2, is in
agreement with the recent measurement 1.83�1�ea0

2 by Roos
et al. �17�.

TABLE III. Comparison of the present results for electric quad-
rupole moments in Ca+, Sr+, and Ba+ with other calculations and
experiments. All values are in atomic units.

Ion State Present Ref. �14� Ref. �15� Other Expt.

Ca+ 3d3/2 1.289�11� 1.338 1.338

3d5/2 1.849�17� 1.917 1.916 1.819a 1.83�1�b

Sr+ 4d3/2 2.029�12� 2.107 2.12

4d5/2 2.935�17� 3.048 2.94�7� 2.840c 2.6�3�d

Ba+ 5d3/2 2.256�11� 2.297 2.309 2.315e

5d5/2 3.319�15� 3.379 3.382 3.382e

aReference �19�.
bReference �17�.
cReference �20�.
dReference �18�.
eReference �16�, CCSD�T�.
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