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Abstract: Excitation energies of ns1/2, npj, and ndj states in Cd+ (n = 5), Hg+ (n = 5) and ns1/2, npj, and (n – 1)dj states in
Ca+ (n = 4), Sr+ (n = 5), and Ba+ (n = 6) are evaluated using the linearized coupled-cluster (all-order) method. Reduced
matrix elements, oscillator strengths, and transition rates are determined for the ns–npj–ndj (or ns–npj–(n – 1)dj) possible
electric dipole transitions in Ca+, Sr+, Ba+, Cd+, and Hg+. Electric quadrupole matrix elements are evaluated to obtain
ns1/2–(n – 1)dj transition rates in Ca+ (n = 5), Sr+ (n = 5), and Ba+ (n = 6). The matrix elements are calculated using both
relativistic many-body perturbation theory, complete through third order, and the relativistic all-order method restricted to
single and double (SD) excitations. The SD lifetime results for the np and nd states in Ca+, Sr+, Ba+, Cd+, and Hg+, are
compared with the latest available experimental measurements. The contribution of the magnetic dipole nd3/2–nd5/2 transition
to the lifetimes of the lowest nd5/2 level ln Ca+, Sr+, and Ba+ ions is discussed. These calculations provide a theoretical
benchmark for comparison with experiment and theory as well as data needed for various applications.

PACS Nos: 31.15.A–, 31.15.ac, 31.15.ag, 31.15.ap

Résumé : Nous évaluons les énergies d’excitation des états ns1/2, npj et ndj dans le Cd+(n = 5), Hg+(n = 6) et ns1/2, npj et
(n – 1)dj dans le Ca+ (n = 4), Sr +(n = 5) et Ba+(n – 6), en utilisant la méthode linéarisée paquet–paquet (cluster–cluster)
à tous les ordres. Nous déterminons les éléments de matrice réduits, les forces d’oscillateur et les taux de transitions pour
toutes les transitions dipôle electrique possibles ns–npj–ndj (ou ns–npj–(n – 1)dj) dans Ca+, Sr+, Ba+, Cd+, et Hg+. Les élé-
ments de matrice du quadripôle électrique sont calculés pour obtenir les taux de transition ns1/2–(n – 1)dj dans Ca+ (n = 5),
Sr+ (n = 5) et Ba+ (n = 6). Les éléments de matrice sont calculés à l’aide de deux méthodes, la théorie relativiste des per-
turbations à N corps, jusqu’au troisième ordre et la méthode relativiste à tous les ordres, limitée aux excitations simples et
doubles (SD). Nous comparons les temps de vie SD pour les états np et nd dans Ca+, Sr+, Ba+, Cd+ et Hg+ avec les plus
récents résultats expérimentaux disponibles. Nous étudions la contribution de la transition dipôle magnétique nd3/2–nd5/2 au
temps de vie du niveau nd5/2 le plus bas dans les ions Ca+, Sr+ et Ba+. Ces calculs fournissent une base de référence théo-
rique pour comparer expérience avec théorie, aussi bien que pour déterminer les données expérimentales requises pour diver-
ses applications.

[Traduit par la Rédaction]

1. Introduction

High-precision measurements of the atomic lifetimes for
low-lying states were recently carried out for various atomic
systems [1–4]. The lifetime of the 1s22s22p 2P3/2 metastable
level of boron-like Ar13+ was determined at the Heidelberg
Electron Beam Ion Trap by Lapierre et al. [1]. The measure-
ment of the 6s level lifetime in neutral rubidium using a
time-correlated single-photon counting technique was re-
ported by Gomez et al. [2]. The measurement of the 3d2 Dj
metastable state lifetime of a single laser-cooled 40Ca+ ion in
a linear Paul trap was presented in ref. 3. The precision
measurements of the 5p 2Pj level lifetimes of a single trapped
Cd+ ion were reported in ref. 4. These measurements are im-
portant for various fields, such as optical frequency stand-

ards, quantum information, and astronomy [3]. The
comparison of high-precision measurements with theoretical
predictions tests the quality of the approximation method
used to account for correlation and relativistic effects in
high-precision atomic calculations.
In the present paper, we calculate the lifetimes of the npj

and ndj states in Cd+ (n = 5), Hg+ (n = 6) and npj and
(n – 1)dj states in Ca+ (n = 4), Sr+ (n = 5), and Ba+
(n = 6). Electric dipole (E1), electric quadrupole (E2), and
magnetic dipole (M1) matrix elements are evaluated to calcu-
late the lifetimes of above-mentioned states. The matrix ele-
ments are calculated using both relativistic many-body
perturbation theory, complete through third order, and the rel-
ativistic all-order method restricted to single and double (SD)
excitations.
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Recently, relativistic many-body calculation of energies,
lifetimes, hyperfine constants, and multipole polarizabilities
in 137Ba+ and 87Sr+ were presented by Safronova [5, 6]. The
6s–npj (n = 6–9) E1 matrix elements and the 6s–ndj
(n = 5–7) E2 matrix elements in Ba+ were calculated by
Iskrenova–Tchoukova and Safronova [7] using the relativistic
all-order linearized coupled-cluster method. This set of ma-
trix elements was used in ref. 7 for accurate calculation of
the ground-state dipole and quadrupole polarizabilities and
lifetimes of the 6pj and 5dj levels. Previously, the n1s–n2pj
and n3dj0 � n2pj (n1 = 6–8, n2 = 6–8, and n3 = 5–7) E1 ma-
trix elements were evaluated by Dzuba et al. [8] to determine
the parity-nonconserving 6s–5d amplitudes in Ba+. Correla-
tion corrections to the electron orbitals were calculated using
the “correlation potential” method. Dzuba et al. [9] carried
out accurate ab initio nonperturbative calculations of the
Breit correction to the parity nonconserving amplitudes of
the 6s–5d3/2 transition in Ba+. E1 and E2 transition ampli-
tudes in Ba+ were calculated by Gopakumar et al. [10] using
the relativistic coupled-cluster method. Numerical values for
the n1s–n2pj and 5dj0 � n2pj (n1 = 6–8 and n2 = 6–8) E1 ma-
trix elements were calculated in ref. 10 using the relativistic
third-order many-body perturbation theory (RMBPT). A de-
scription of this method and explicit formulas for the associ-
ated diagrams were given in the paper by Blundell et al. [11].
Recently [12], the calculation of the 4d2 DJ–4s2 S1/2 E2

matrix elements in Sr+ was performed using an ab initio rela-
tivistic all-order method, which sums infinite sets of many-
body perturbation theory terms. These matrix elements were
used to evaluate the 4d radiative lifetimes and their ratio [12].
In ref. 13, the relativistic coupled-cluster theory was used to
perform accurate calculations of the lifetimes of the lowest
excited 4d2 DJ states in singly ionized strontium. The life-
times of the 4d2 DJ levels and other Sr+ properties were re-
cently evaluated by Mitroy et al. [14] by diagonalizing a
semiempirical Hamiltonian in a large dimension
single-electron basis.
Recently, relativistic configuration–interaction oscillator

strengths for lowest E1 transitions in gold isoelectronic se-
quence were presented by Glowacki and Migdalek [15]. Nu-
merical results for Hg II ion were listed only for the 6s–6pj
transitions. Relativistic corrections to the transition frequen-
cies of Ag I, Dy I, Ho I, Yb II, Yb III, Au I, and Hg II ions
were investigated recently by Dzuba and Flambaum [16] ow-
ing to the search for variation of the fine-structure constant.
Relativistic many-body perturbation theory was used by Sa-
fronova and Johnson [17] to evaluate excitation energies, os-
cillator strengths, and lifetimes of ions along the gold
isoelectronic sequence. Numerical results for the Hg II ion
were presented for the ns1/2 (n = 6–9), npj (n = 6–8), ndj
(n = 6–7), and 5fj states for excitation energies and oscillator
strengths between those states.
In this paper, we conduct both RMBPT and SD all-order

calculations of the Ca+, Sr+, Cd+, Ba+, and Hg+ properties.
Such calculations permit one to investigate the convergence
of the perturbation theory and estimate the theoretical error
of predicted data. In the present paper, we evaluate reduced
matrix elements, transition rates, and lifetimes for the
low-lying levels in Ca+, Sr+, Cd+, Ba+, and Hg+ ions. Our
results are compared with theoretical results from refs. 18–
27.

2. Energies of Hg+, Ba+, Cd+, Sr+, and Ca+

We start from the “no-pair” Hamiltonian [28]

H ¼ H0 þ VI ð1Þ
where H0 and VI can be written in a second-quantized form
as

H0 ¼
X
i

3ia
þ
i ai ð2Þ

VI ¼ 1

2

X
ijkl

gijkla
þ
i a

þ
j alak ð3Þ

and the negative energy (positron) states are excluded from
the sums. The quantities 3i are eigenvalues of the one-elec-
tron Dirac–Fock (DF) equations with a frozen core, the two-
particle matrix element gijkl is the Coulomb matrix element,
and aþi , ai are creation and annihilation operators, respec-
tively.
We carry out our calculations starting from a VN–1 DF po-

tential [Ar], [Kr], [Kr]4d10, [Kr]4d105s25p6, and [Kr]
4d104f145s25p65d10 in the cases of Ca+, Sr+, Cd+, Ba+, and
Hg+, respectively. There are a number of advantages associ-
ated with this potential, including a greatly reduced number
of Goldstone diagrams [29], a clean separation of the core
and valence states, and one set of single-particle states, lead-
ing to important simplifications in the calculation of excita-
tion energies and transition matrix elements. Thus, the total
energy of different valence states of a one-electron atom, can
be written as

E ¼ Ev þ Ecore ð4Þ
where Ecore is the same for all valence states, n. Because the
first-order correlation correction to valence removal energies
vanishes for a VN–1 DF potential, the first nonvanishing cor-
rections are found in second order.
Despite the elimination of a large set of Goldstone dia-

grams owing to the use of the VN–1 DF potential, the third-
order energy expression still contains 52 terms, given by
Blundell et al. [30]. The third-order expression for the energy
includes terms with one-, two-, three-, and four-particle sums
over virtual states and sums over core states.
The all-order single–double method was discussed previ-

ously in refs. 31–37. Briefly, we represent the wave function
Jn of an atom with one valence electron atom as J v ffi JSD

v

with

JSD
v ¼ 1þ

X
ma

rmaa
þ
maa þ

1

2

X
mnab

rmnaba
þ
ma

þ
n abaa

"

þ
X
m 6¼v

rmva
þ
mav þ

X
mna

rmnvaa
þ
ma

þ
n aaav

#
Fv ð5Þ

where Fn is the lowest-order atomic wave function, which is
taken to be the frozen-core DF wave function of a state n. We
note that we again start from the VN–1 DF potential. Substitut-
ing the wave function JSD

v into the many-body Schrödinger
equation, with Hamiltonian given by the eqs. (1)–(3), one ob-
tains the coupled equations for the single- and double-excita-
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tion coefficients rmv, rma, rmnva, and rmnab. The coupled
equations for the excitation coefficients are solved iteratively.
The resulting excitation coefficients are used to evaluate mul-
tipole matrix elements. This method allows inclusion of the
contribution of certain classes of RMBPT terms to all orders.
The valence ESD

v energy given by

ESD
v ¼

X
ma

egvavmrma þX
mab

gabvmermvab þX
mna

gvamnermnva ð6Þ

does not include a certain part of the third-order contribution
associated with triple excitation. This part of the third-order
contribution, Eð3Þ

extra, is given in ref. 34 and needs to be calcu-
lated separately. We use our third-order energy code to sepa-
rate out Eð3Þ

extra and add it to the ESD
v . We drop the index n in

the designations in the text and tables below.
We use B-splines [38] to generate a complete set of basis

DF wave functions for use in the evaluation of RMBPT and
all-order expressions. For Ca+, Sr+, Cd+, Ba+, and Hg+, we
use 50 splines of order k = 8 for each angular momentum
value. The basis orbitals are constrained to a spherical cavity.
The cavity radius, R = 65 au, is chosen large enough to ac-
commodate all ns1/2 and ndj orbitals considered here and
small enough that 50 splines can approximate inner-shell DF
wave functions with good precision (10–4%–10–5% for Ba+
ion and 10–6%–10–7% for Sr+ ion).
Results of our calculations of energies for the lowest states

of Hg+, Ba+, Cd+, Sr+, and Ca+ ions are summarized in Ta-
ble 1. The first six columns of Table 1 give the lowest-order
DF energies E(0), second- and third-order Coulomb correlation
energies, E(2) and E(3), first-order Breit contribution B(1), sec-
ond-order Coulomb–Breit B(2) corrections, and Lamb shift con-
tribution, ELS. We take the sum of these six contributions to be
our final third-order RMBPT results, Eð3Þ

tot , listed in the seventh
column of Table 1. We list the all-order SD energies in the col-
umn labeled ESD and the part of the third-order energies omit-
ted in the SD calculation in column Eð3Þ

extra. We note that ESD

contains an E(2) contribution. We take the sum of the six terms
E(0), ESD, Eð3Þ

extra, B(1), B(2), and ELS to be our final all-order re-
sults ESD

tot listed in the ninth column of Table 1. The recom-
mended values from the National Institute of Standards and
Technology (NIST) database [39] are given in the column la-
beled ENIST. The differences between our calculations and the
NIST data, dEð3Þ ¼ Eð3Þ

tot � ENIST and dESD ¼ ESD
tot � ENIST,

are given in the last two columns of Table 1.
As expected, the largest correlation contribution to the va-

lence energy comes from the second-order term, E(2). Calcu-
lating this term is simple in comparison with calculating the
E(3) and ESD terms. Thus, we can calculate the E(2) term with
better numerical accuracy than the E(3) and ESD terms.
The second-order energy, E(2), includes partial waves up to

lmax = 8 and is extrapolated to account for contributions from
higher partial waves (see, for example, refs. 40, 41). As an
example of the convergence of E(2) with the number of partial
waves, l, we consider the 6s1/2 state in the Hg+ ion. Calcula-
tions of E(2) with lmax = 6 and 8 yield E(2)(6s1/2) = –18158.0
and –18351.4 cm–1, respectively. Extrapolation of these cal-
culations yields –18387.3 and –18381.3 cm–1, respectively.
Thus, in this particular case, we have a numerical uncertainty
in E(2)(6s1/2) of 6.0 cm–1. It should be noted that the
193.3 cm–1 contribution from partial waves with l > 6 for

the 6s state is the largest among all the Hg+ states considered
in Table 1; smaller (about 16–17 cm–1) contributions are ob-
tained for the 6d3/2 and 6d5/2 states and much smaller contri-
butions (2–3 cm–1) are obtained for n = 7 states. Similar
convergence patterns are found for all other ions considered.
Owing to computational complexity, we restrict l ≤ lmax = 6

in the ESD calculation. As noted above, the second-order con-
tribution dominates ESD; therefore, we can use the extrapo-
lated value of E(2), described above, to account for the
contributions of the higher partial waves. Six partial waves
are also used in the calculation of E(3). Since the asymptotic
l-dependence of the second- and third-order energies are sim-
ilar (both fall off as l–4), we use the second-order remainder
as a guide to estimate the remainder in the third-order contri-
bution. The term Eð3Þ

extra in Table 1, which accounts for that
part of the third-order RMBPT energy missing from the SD
energy, is smaller than E(3) by a factor of 2–3 for the states
considered here.
The first-order Breit energies (column B(1) in Table 1) in-

clude retardation, whereas the second-order Coulomb–Breit
energies (column B(2) in Table 1) are evaluated using the un-
retarded Breit operator. The Lamb shift, ELS, is approximated
as the sum of the one-electron self energy and the first-order
vacuum-polarization energy. The vacuum-polarization contri-
bution is calculated from the Uehling potential using the re-
sults of Fullerton and Rinker [42]. The self-energy
contribution is estimated for the s, p1/2, and p3/2 orbitals by
interpolating among the values obtained by Mohr [43–45] us-
ing Coulomb wave functions. For this purpose, an effective
nuclear charge, Zeff, is obtained by finding the value of Zeff
required to give a Coulomb orbital with the same 〈r〉 as the
DF orbital. It should be noted that the values of ELS are very
small (ELS ≤ 79 cm–1 for Hg II and ELS ≤ 8 cm–1 for Ba II).
We find that the correlation corrections to energies were

large for the ions considered in this work, especially for the
nd states in Ba II, Sr II, and Ca II and for the ns states in
Hg II and Cd II. For example, E(2) is about 13% of E(0), and
E(3) is about 30% of E(2) for the 5dj states of Ba II. Despite
the evident slow convergence of the perturbation theory ex-
pansion, the 6s energy in Hg II from the third-order RMBPT
calculation is within 1.3% of the measured energy.
As expected, the SD results are in better agreement with

the recommended values than the third-order RMBPT results
are, owing to more complete inclusion of the correlation cor-
rection. The differences between the all-order values and ex-
periment, dESD, are smaller than the corresponding third-
order differences, dE(3), by a factor of 3–5 as illustrated by
the two last columns of Table 1. Better agreement of the all-
order values with experiment demonstrates the importance of
the higher-order correlation contributions.

3. E1 matrix elements, transition rates, and
lifetimes in Ca+, Sr+, Cd+, Ba+, and Hg+

3.1 E1 matrix elements
The one-body matrix element of the operator Z is given by

[31]

Zwv ¼ hJwjZjJviffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihJ vjJ vihJwjJwi
p ð7Þ
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where Jn is the exact wave function for the many-body “no-
pair” Hamiltonian H

HjJ vi ¼ EjJ vi ð8Þ
In RMBPT, we expand the many-electron wave function

Jn in powers of VI as

jJ vi ¼ jJ ð0Þ
v i þ jJ ð1Þ

v i þ jJ ð2Þ
v i þ jJ ð3Þ

v i þ � � � ð9Þ
The denominator in (7) arises from the normalization con-

dition that contributes starting from the third order of
RMBPT [46]. In the lowest order, we find

Zð1Þ
wv ¼ hJ ð0Þ

w jZjJ ð0Þ
v i ¼ zwv ð10Þ

where zwn is the corresponding one-electron matrix element
[47]. Since J ð0Þ

w is a DF function we use the Z(DF) designation
instead of Z(1) below.
The second-order Coulomb correction to the transition ma-

trix element in the DF case with VN–1 potential is given by
[48]

Zð2Þ
wv ¼

X
na

zanðgwnva � gwnavÞ
3a þ 3v � 3n � 3w

þ
X
na

ðgwavn � gwanvÞzna
3a þ 3w � 3n � 3v

ð11Þ

The second-order Breit corrections are obtained from (11)
by changing gijkl to Breit matrix element bijkl [49].
In the all-order SD calculation, we substitute the all-order

SDwave function, JSD
v , into the matrix element expression

given by (7) and obtain the expression [31]

ZðSDÞ
wv ¼ zwv þ ZðaÞ þ � � � þ ZðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ NwÞð1þ NvÞ

p ð12Þ

where Zwn is the lowest-order (DF) matrix element given by
(10) and the terms Z(k), k = a, ⋅⋅⋅, t are linear or quadratic
functions of the excitation coefficients introduced in (5). The
normalization terms, Nw, are quadratic functions of the exci-
tation coefficients. As a result, certain sets of many-body per-
turbation theory terms are summed to all orders in this
method. Unlike the energy, the SD all-order matrix elements
contain the entire third-order RMBPT contribution.
The calculation of the transition matrix elements provides

another test of the quality of atomic structure calculations
and another measure of the size of correlation corrections.
Reduced E1 matrix elements between low-lying states of
Hg II, Ba II, Cd II, Sr II, and Ca II calculated in the third
order RMBPT and in the all-order SD approximation are pre-
sented in Table 2.

Table 1. Zeroth-order (DF), second- and third-order Coulomb correlation energies E(n), single–double Coulomb ESD, Eð3Þ
extra, first-order Breit

and second-order Coulomb–Breit corrections B(n) to the energies of Hg II, Ba II, Cd II, Sr II, and Ca II.

nlj E(0) E(2) E(3) B(1) B(2) ELS Eð3Þ
tot ESD Eð3Þ

extra ESD
tot ENIST dE(3) dESD

Hg II
6s1/2 –136471 –18374 5622 389 –756 79 –149510 –15850 1665 –150943 –151280 1770 337
6p1/2 –89694 –11013 2811 269 –375 –2 –98003 –10585 878 –99508 –99795 1792 287
6p3/2 –82029 –8885 2201 153 –272 1 –88832 –8886 740 –90293 –90672 1840 379
6d3/2 –44308 –1985 410 28 –58 0 –45912 –2089 183 –46243 –46297 385 54
6d5/2 –43866 –1870 368 23 –60 0 –45405 –2086 168 –45821 –45737 332 –84
Ba II
6s1/2 –75340 –6569 2326 70 –102 8 –79606 –5970 1010 –80324 –80687 1081 363
5d3/2 –68139 –9124 2731 105 –257 0 –74684 –8394 1218 –75467 –75813 1129 346
5d5/2 –67665 –8667 2537 78 –246 0 –73962 –8010 1132 –74711 –75012 1050 301
6p1/2 –57266 –3630 1120 54 –48 0 –59770 –3517 516 –60262 –60425 655 163
6p3/2 –55873 –3275 1008 39 –47 0 –58149 –3171 464 –58589 –58735 586 146
Cd II
5s1/2 –124568 –13474 3325 150 –250 23 –134794 –12408 1143 –135910 –136375 1581 465
5p1/2 –84903 –7730 1616 107 –124 0 –91034 –7678 593 –92005 –92239 1205 234
5p3/2 –82871 –7175 1479 76 –113 0 –88604 –7175 554 –89529 –89756 1152 227
5d3/2 –45147 –1532 236 14 –26 0 –46454 –1665 122 –46702 –46686 232 –16
5d5/2 –45010 –1503 230 11 –27 0 –46299 –1643 119 –46550 –46531 232 –19
Sr II
5s1/2 –84042 –5610 1237 49 –64 6 –88425 –5386 618 –88819 –88964 539 145
4d3/2 –67385 –7908 1644 61 –162 0 –73750 –7719 758 –74446 –74408 659 –38
4d5/2 –67242 –7728 1593 45 –157 0 –73490 –7546 733 –74169 –74128 638 –41
5p1/2 –62512 –2982 572 38 –31 0 –64915 –3000 310 –65196 –65249 334 53
5p3/2 –61828 –2844 544 28 –31 0 –64131 –2861 294 –64397 –64447 317 50
Ca II
4s1/2 –91440 –4786 858 24 –23 4 –95364 –4698 520 –95600 –95752 387 139
3d3/2 –72617 –10333 1990 34 –100 0 –81027 –10579 1011 –82206 –82102 1075 –149
3d5/2 –72593 –10278 1978 21 –98 0 –80970 –10521 1003 –82142 –82041 1071 –146
4p1/2 –68037 –2675 412 20 –12 0 –70293 –2753 272 –70506 –70560 267 50
4p3/2 –67837 –2643 406 14 –13 0 –70073 –2719 268 –70283 –70337 265 50

Note: The total energies (Eð3Þ
tot ¼ Eð0Þ þ Eð2Þ þ Eð3Þ þ Bð1Þ þ Bð2Þ þ ELS, ESD

tot ¼ Eð0Þ þ ESD þ Eð3Þ
extra þ Bð1Þ þ Bð2Þ þ ELS) are compared with experimental

energies, ENIST [39], dE = Etot – ENIST. Units: cm
–1.
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Our calculations of reduced matrix elements in the lowest-,
second-, and third-orders, Z(n), in Hg II, Ba II, Cd II, Sr II,
and Ca II ions are carried out following the method described
above. The lowest order DF value is obtained from (10). The
values of Z(DF+2) are the sum of the second-order correlation
correction, Z(2), given by (11) and the DF matrix elements,
Z(DF). It should be noted that the second-order Breit correc-
tions, B(2), are rather small in comparison with the the sec-
ond-order Coulomb corrections, Z(2) (the ratio of B(2) and Z
(2) is about 0.2%–2%).

The third-order matrix elements, Z(DF+2+3), include the DF
values, the second-order, Z(2), results, and the third-order,
Z(3), correlation correction, which includes random-phase-ap-
proximation terms (RPA) iterated to all orders, Brueckner or-
bital (BO) corrections, the structural radiation, Z(SR), and
normalization, Z(NORM), terms (see [50] for detailed expres-
sions for these terms).
The terms Z(RPA) and Z(BO) give the largest contributions to

Z(3). The sum of terms Z(RPA) and Z(BO) is about 15%–25% of
the Z(DF) term and has opposite sign. The smallest contribu-
tions (about 1%) come from the structural radiation, Z(SR),
and normalization, Z(NORM), terms. The basis set used here is
the same as in the calculation of the energy contributions. We
find correlation corrections Z(2+3) to be very large, 10%–25%
for many cases. All results given in Table 2 are obtained us-
ing the length form of the matrix elements. Length-form and
velocity-form matrix elements differ typically by 5%–20% for
the DF matrix elements and 2%–5% for the second-order ma-
trix elements in this calculations.
E1 matrix elements evaluated in the all-order SD approxi-

mation (12) are given in the column labeled Z(SD) in Table 2.
The SD matrix elements Z(SD) include Z(3) completely, along
with important fourth- and higher-order corrections. The
fourth-order corrections omitted from the SD matrix elements
were discussed recently by Derevianko and Emmons [51].

Table 4. Lifetimes, t, of the nl levels in Ca II, Sr II,
Ba II, Cd II, and Hg II.

Level t(SD) ttheor texpt

Ba II, Z = 56
6p1/2 7.798 7.89a 7.90±0.10a

6p3/2 6.245 6.30a 6.32±0.10a

Sr II, Z = 38
5p1/2 7.383 7.48b 7.39±0.07b

5p3/2 6.660 6.74b 6.63±0.07b

Ca II, Z = 20
4p1/2 6.892 6.931c 6.978±0.056c

4p3/2 6.702 6.881c 6.926±0.036c

Hg II, Z = 80
6p1/2 2.64 – 2.91±0.11d

6p3/2 1.61 – 1.80±0.06d

6d3/2 1.29 – –
6d5/2 1.60 – –
Cd II, Z = 48
5p1/2 3.102 3.09e 3.148±0.011f

5p3/2 2.612 2.60e 2.647±0.010f

5d3/2 1.51 1.86e 1.79±0.11g

[1.79]
5d5/2 1.61 1.67 1.85±0.15g

Note: The lifetime of 5d3/2 level in Cd II 1.51[1.79] comes
from two decay channels, 5p1/2–5d3/2 and 5p3/2–5d3/2. The second
number includes only the 5p1/2–5d3/2 transition. The SD data are
compared with other theoretical results and experimental mea-
surements

aFor Ba II from ref. 54 and references therein
bFor Sr II from ref. 55 and references therein
cFor Ca II from ref. 27
dFor Hg II from ref. 22 and references therein
eFor Cd II from ref. 26
fRef. 4
gRef. 23

Table 2. Reduced E1 matrix elements in Hg II, Ba II, Cd
II, Sr II, and Ca II calculated in first, second, third, and
all orders of perturbation theory.

Transition Z(DF) Z(DF+2) Z(DF+2+3) Z(SD)

Hg II
6p1/2 6s1/2 2.2875 1.7000 1.6248 1.6569
6p3/2 6s1/2 3.1820 2.4358 2.3087 2.3469
6p1/2 6d3/2 3.6018 3.2440 2.8418 2.9495
6p3/2 6d3/2 1.8765 1.7052 1.5320 1.5647
6p3/2 6d5/2 5.5565 5.0638 4.5254 4.5923
Ba II
6p1/2 6s1/2 3.8909 3.4733 3.2763 3.3380
6p3/2 6s1/2 5.4775 4.9114 4.6188 4.7097
6p1/2 5d3/2 3.7454 3.3923 2.9063 3.0545
6p3/2 5d3/2 1.6354 1.4939 1.2650 1.3340
6p3/2 5d5/2 5.0011 4.5729 3.9183 4.1108
Cd II
5p1/2 5s1/2 2.4271 2.0342 1.9168 1.9392
5p3/2 5s1/2 3.4280 2.8889 2.7191 2.7513
5p1/2 5d3/2 4.0144 3.7414 3.3870 3.4401
5p3/2 5d3/2 1.8684 1.7444 1.5917 1.6122
5p3/2 5d5/2 5.5857 5.2181 4.7554 4.8195
Sr II
5p1/2 5s1/2 3.4848 3.2051 3.0504 3.0784
5p3/2 5s1/2 4.9211 4.5325 4.3104 4.3507
5p1/2 4d3/2 3.7292 3.4779 2.9787 3.0830
5p3/2 4d3/2 1.6572 1.5493 1.3217 1.3694
5p3/2 4d5/2 5.0025 4.6776 4.0117 4.1497
Ca II
4p1/2 4s1/2 3.2012 3.0045 2.8826 2.8978
4p3/2 4s1/2 4.5269 4.2499 4.0773 4.0989
4p1/2 3d3/2 3.0825 2.9296 2.2998 2.4173
4p3/2 3d3/2 1.3764 1.3088 1.0260 1.0788
4p3/2 3d5/2 4.1348 3.9311 3.0882 3.2452

Table 3. The E1 transition rates, A, (107 s–1) for transitions in Ba
II calculated in the SD ASD

SD approximation (i.e., SD data are used
for both energies and matrix elements).

Transition ASD
SD ASD

NIST A(theor) A(expt)

6s1/2 6p1/2 9.115 9.390 9.368 9.5±0.9
6s1/2 6p3/2 11.54 11.89 11.94 10.6±0.9
5d3/2 6p1/2 3.323 3.443 3.493 3.77±0.24
5d3/2 6p3/2 0.433 0.449 0.425 0.469±0.029
5d5/2 6p3/2 3.587 3.691 3.261 3.38±0.19

Note: Data in the column ASD
NIST are obtained by using NIST data for

wavelengths and SD matrix elements. Our results are compared with
theoretical, A(theor), and experimental, A(expt), data given in ref. 52 and
refs. cited therein.
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The Z(SD) values are smaller than the Z(DF+2) values and
larger than the Z(DF+2+3) values for all transitions given in Ta-
ble 2.

3.2 Transition rates and lifetimes in Ca+, Sr+, Cd+, Ba+,
and Hg+
Transition rates, A, and lifetimes in Ca+, Sr+, Cd+, Ba+,

and Hg+ calculated in SD approximation are summarized in
Tables 3 and 4, respectively.
In Table 3, we compare transition rates, A (107 cm–1), with

available theoretical and experimental measurements given in
ref. 52 for Ba II. The SD data are used for dipole matrix ele-
ments and energies in columns with headings ASD

SD. In the col-
umn with headings ASD

NIST, the NIST data are used for
energies and SD data are used for the matrix elements. We
include these values since the NIST data were also used in
the theoretical results by Gopakumar et al. [52]. Experimen-
tal results given in the last column of Table 3 are taken from
ref. 52. The accuracy of experimental results is not very high
and does not allow us to make a firm decision as to which
theoretical data in Table 3 are in better agreement with exper-
imental values.

We calculate lifetimes of the np and nd states in Cd+
(n = 5) and Hg+ (n = 6), and npj states in Ca+ (n = 4), Sr+
(n = 5), and Ba+ (n = 6) using SD results for dipole matrix
elements and experimental energies. The lifetimes of the
(n – 1)dj states in Sr+ (n = 5), Ba+ (n = 6), and Ra+ (n = 7)
are discussed in the next section. We compare the lifetimes,
t(SD), with available experimental measurements in Table 4.
Our SD results are in good agreement with experimental
measurements when we take into account the experimental
uncertainties. The largest disagreement (about 1%) between
the SD results and measurements by Pinnigton et al. [23] is
observed for the 5dj states in Cd II. We list two SD numbers
for the lifetime of 5d3/2 level in Cd II 1.51[1.79]: the first
number comes from two decay channels, 5p1/2–5d3/2 and
5p3/2–5d3/2. The second number includes only the 5p1/2–5d3/2
transition. We note that the second result agrees very well
with experimental measurements given in ref. 23.

4. E2 and M1 transitions in Ca II, Sr II, and
Ba II

Reduced matrix elements of the E2 and M1 operators in
lowest-, second-, third-, and all-order perturbation theory are
given in Table 5 for Ca II, Sr II, and Ba II. Detailed descrip-
tions of the calculations of the reduced matrix elements of
the E2 and M1 operators in lowest- and second- order pertur-
bation theory were given by Safronova et al. [53] Third-order
and all-order calculations are done in the same way as the
calculations of E1 matrix elements.
As an additional test of accuracy of our ab initio SD val-

ues, we compare our results for the lifetimes of the nd levels
for Ba II, Sr II, and Ca II with recommended theoretical val-
ues and experimental measurements from refs. 3, 7, 12, 20,
and 25, in Table 6. Recommended theoretical values [3, 7,
and 12] are from a similar all-order calculation, but include
semi-empirical scaling that estimates the dominant class of
missing correlation effects. The ratio of the M1 5d3/2–5d5/2
and the E2 6s1/2–5d5/2 transition is equal to 0.206, which de-
creases the lifetime of the 5d5/2 level by 17%. It is smaller
than the ratio of the M1 4d3/2–4d5/2 and the E2 5s1/2–4d5/2
transition in Sr II (about 0.01%).

Table 5. Reduced matrix elements of the E2 and M1 operators in first-, second-, third-, and all-order perturbation theory in Ba II, Sr II, and
Ca II.

Z(DF) Z(DF+2) Z(DF+2+3) Z(SD) Z(DF) Z(DF+2) Z(DF+2+3) Z(SD)

Transition E2 transitions M1 transitions

Ba II Ba II
6s1/2 5d3/2 14.7633 15.6749 11.8208 12.4976 0.0000 0.0001 0.0140 0.0002
6s1/2 5d5/2 18.3840 19.5789 14.8623 15.6514 – – – –
5d3/2 5d5/2 8.0914 9.2780 6.2769 6.6486 1.5489 1.5489 1.5315 1.5493

Sr II Sr II
5s3/2 4d3/2 12.9681 13.2533 10.5854 11.0096 0.0000 0.0000 0.0093 0.0000
5s3/2 5d5/2 15.9721 16.3366 13.0956 13.6016 – – – –
4d3/2 4d5/2 7.2603 8.5432 5.5821 5.9045 1.5491 1.5492 1.5385 1.5492

Ca II Ca II
4s1/2 3d3/2 9.7673 9.7272 7.4009 7.78776 0.0000 0.0000 0.0050 0.0000
4s1/2 3d5/2 11.9782 11.9265 9.0914 9.56146 – – – –
3d3/2 3d5/2 5.0183 4.9554 3.3275 3.68805 1.5491 1.5491 1.5421 1.5491

Table 6. Lifetimes t of the nd levels in Ba+, Sr+, and Ca+ in sec.

Level tSD ttheor texpt

Ba II, Z = 56
5d3/2 83.26 81.5(1.2)a 89.4±15.6b

5d5/2 30.88 30.3(4)a 31.6±4.6b

Sr II, Z = 38
4d3/2 0.4509 0.441(3)c 0.435±0.004d

4d5/2 0.4029 0.394(3)c 0.408±0.022d

Ca II, Z = 20
3d3/2 1.243 1.196(11)e 1.176(11)e

3d5/2 1.209 1.165(11)e 1.168(7)e

Note: The SD data are compared with theoretical recommended values
and experimental measurements

aFor Ba II from ref. 7
bFor Ba II from ref. 20
cFor Sr II from ref. 12
dFor Sr II from ref. 25
eFor Ca II from ref. 3
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5. Conclusion
In summary, a systematic relativistic RMBPT study of the

energies of ns, np, and nd states in Ca+, Sr+, Ba+, Cd+, and
Hg+ is presented. The energy values are in good agreement
with existing experimental data. A systematic all-order SD
study of the reduced matrix elements and transition rates for
the ns1/2–npj–ndj and ns1/2–npj–(n – 1) dj allowed E1 transi-
tions in Cd+ (n = 5), Hg+ (n = 6) and in Ca+ (n = 4), Sr+
(n = 5), and Ba+ (n = 6) is conducted. The SD lifetime re-
sults for np and nd states in Ca+, Sr+, Ba+, Cd+, and Hg+
are compared with the latest available experimental measure-
ments. The contributions of the M1 nd3/2–nd5/2 transition to
the lifetimes of the nd5/2 level ln Ca+ (n = 4), Sr+ (n = 5),
and Ba+ (n = 6) ions are included. Our work provides data
for analyzing existing experimental data and for planning fu-
ture measurements.
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