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Atomic calculations for tests of fundamental
physics1

M.S. Safronova

Abstract: An overview of applications of atomic calculations for atomic physics tests of fundamental physics is presented.
The current status of atomic parity violation studies is discussed in detail. The progress on the development of a novel
method for precision calculation of properties of atomic systems with a few valence electrons is reported. This method com-
bines the all-order approach currently used for monovalent atoms with the configuration interaction approach that is applica-
ble for many-electron systems. Development of this method is aimed at significant improvement in the theoretical accuracy
of the parity nonconserving amplitude calculations in systems with more than one valence electron. Tests of fundamental
symmetries and other applications not only require precise calculations of the atomic properties but also evaluation of the
accuracy of the results. Possible approaches to evaluating the uncertainties of the theoretical values and an example of such
an evaluation are considered.

PACS Nos: 11.30.Er, 21.30.Fe, 31.15.ac, 31.15.am

Résumé : Nous proposons une vue d’ensemble des applications de calculs atomiques comme tests de physique fondamen-
tale. Nous discutons en détail l’état actuel des études de violation de parité en physique atomique. Nous présentons les pro-
grès faits dans le développement d’une nouvelle méthode pour calculer avec précision les propriétés de systèmes atomiques
comptant quelques électrons de valence. Cette approche combine l’approche à tous les ordres, couramment utilisée pour les
atomes monovalents, avec l’approche d’interaction de configuration qui est applicable aux systèmes à plusieurs électrons. Le
développement de cette méthode vise à améliorer de façon significative la précision théorique des calculs d’amplitude de
non conservation de parité dans les atomes à plus d’un électron de valence. Les tests de symétries fondamentales et d’autres
applications non seulement exigent un calcul précis des propriétés atomiques, mais aussi une évaluation de la précision des
résultats. Nous passons en revue les approches possibles pour évaluer théoriquement les incertitudes et présentons un exem-
ple de calcul.

[Traduit par la Rédaction]

1. Introduction

Recent advances in experimental atomic physics, remark-
able increases in computational power, and the development
of the high-precision methodologies to study atomic physics
quantities led not only to our better understanding of the
atomic properties but also to remarkable opportunities for ap-
plications in many areas of science and technology. One such
areas is the study of fundamental symmetries with atomic
systems. The goals of high-precision atomic parity violation
studies are to search for new physics beyond the SM (SM)
of the electroweak interaction by accurate determination of
the weak charge QW and to probe parity violation in the nu-
cleus by evaluation of the nuclear anapole moment. Atomic
parity nonconservation (PNC) measurements have been com-

pleted in Cs (0.35% accuracy [1]), Tl (1.7% [2, 3]), Bi (2%
[4]), Pb (1.2% [5, 6]), as well as Sm [7] and Dy [8].
Interpretation of the cesium PNC experiment [1] requires a

theoretical calculation of the parity-violating amplitude in
terms of the weak charge QW. The most recent calculation of
the PNC amplitude and consequent analysis of a Cs experi-
ment [9] provided the most accurate low-energy test of the
electroweak sector of the the SM to date. The result of this
study agrees with the prediction of the SM and places con-
straints on a variety of new physics scenarios beyond the
SM. The lower limit on the masses of extra Z bosons, pre-
dicted by the models of grand unification and string theories,
was increased [9]. Combined with the results of high-energy
collider experiments, the Cs PNC study [1, 9] confirmed the
energy dependence (or “running”) of the electroweak force
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over an energy range spanning four orders of magnitude
(from ∼10 MeV to ∼100 GeV).
The study of PNC in cesium also led to a first measure-

ment of the nuclear anapole moment [1] and allowed to place
constraints on PNC meson coupling constants [10, 11]. These
constraints were found to be in disagreement with the ones
obtained from nuclear parity violating experiments. Recently,
a high-precision relativistic all-order calculation of the spin-
dependent PNC amplitude in Cs [12] was carried out in an
attempt to understand this discrepancy. The new result [12]
was found to be consistent with the older atomic physics
value of the anapole coupling constant. Therefore, the dis-
agreement between atomic and nuclear physics PNC studies
remains unexplained.
More PNC experiments in other atomic systems, such as

Yb [13], Fr [14–16], and Ra+ [17], are currently in progress.
In 2010, atomic parity violation was observed in the 6s2 1S0–
5d6s 3D1 408 nm forbidden transition of ytterbium [13]. The
parity-violating amplitude was found to be two orders of
magnitude larger than in cesium, and constitutes the largest
atomic parity-violating amplitude yet observed. This experi-
ment, carried out by D. Budker’s group at the University of
California, Berkeley, opened the way to future measurements
of neutron distributions and anapole moments by comparing
parity-violating amplitudes for various isotopes and hyperfine
components of the transition.
In the case of Pb, Bi, and Tl experiments, no theoretical

calculations of comparable accuracy exist to allow the full
analysis of those measurements to test the SM. Development
of a new theoretical approach that combines configuration in-
teraction (CI) with coupled-cluster method [18] is aimed at a
significant improvement of the theoretical accuracy.
An intrinsic electric dipole moment (EDM) can exist only

if parity (P) and time reversal (T) invariance are violated
[19]. The intrinsic EDMs predicted by the SM are much too
small to be detected, but various extensions to the SM predict
observable values. While CP violation is observed in particle
physics, much stronger CP-violating mechanisms may be re-
quired to explain the matter–antimatter asymmetry of the uni-
verse. Experimental searches for EDMs provide constraints
on such models. In heavy paramagnetic atoms, an electron
EDM results in an atomic EDM enhanced by a factor
R ¼ datom=de (see ref. 20 and refs. cited therein). The atomic
calculations of the enhancement factors R [21] are needed for
the interpretation of the EDM experiments and as a guide for
a future experimental effort in the search for the EDM.
Another test of fundamental physics where the atomic

physics calculations are important is the search for the varia-
tion of the fundamental constants, such as the fine-structure
constant a. The astrophysical approach to such studies (in-
volving study of absorption lines in the spectra of distant
quasars) requires the calculations of the isotope shifts in
many systems, since possible changes in isotopic abundances
with time may mimic the variance in the value of the fine-
structure constant [22]. The laboratory searches for the varia-
tion of the fundamental constants are based on comparing the
frequencies of two ultra-precise atomic clocks over time [23].
Atomic calculations are needed to evaluate some uncertain-
ties of the current atomic clocks (such as blackbody radiation
shifts [24]) for the improvement of their precision, and to
search for new opportunities to develop more precise fre-

quency standards. The development of more accurate atomic
clocks resulted in numerous technological applications and
new opportunities for the tests of fundamental science. New
generations of the atomic clocks, based on optical rather
than microwave frequency standards, will increase the accu-
racy and stability of atomic clocks by orders of magnitude.
More precise frequency standards will lead to more sensitive
quantum-based standards for applications such as inertial
navigation, magnetometry, gravity gradiometry, measure-
ments of the fundamental constants, and testing of physics
postulates.

2. Parity violation
The PNC effects in atoms lead to a nonzero amplitudes for

atomic transitions that are otherwise forbidden by the parity
selection rule, such as the 6s–7s transition in cesium. PNC
effects in atoms are caused by the exchange of a virtual Z0
boson between an electron of the atom and a quark in the
nucleus, or between two atomic electrons. The second effect
is extremely small, contributing only 0.03% to the PNC am-
plitude in Cs [25]. The dominant PNC interaction between an
atomic electron and the nucleus is described by a Hamilto-
nian, H(1) = AeVN, which is the product of the axial-vector
electron current Ae and the vector nucleon current VN. An-
other contribution comes from the product of the vector
electron current Ve and the axial-vector nucleon current
AN, H(2) = VeAN. Another PNC interaction that depends on
the spin of the nucleus arises from the electromagnetic cou-
pling of atomic electrons to the nuclear anapole moment,
which is a parity-violating nuclear toroidal magnetic moment
described in [26].
The Boulder experiment [1] resulted in the measurement

of the quantities R = Im(EPNC)/b for the 6sF=4–7sF=3 and
6sF= 3–7sF= 4 transitions in 133Cs, where F is the total angular
momentum (I = 7/2 for 133Cs nucleus) and b is a vector tran-
sition polarizability [27]. The resulting values,

R4�3 ¼ �1:6349ð80ÞmV=cm

and

R3�4 ¼ �1:5576ð77ÞmV=cm

allow us to infer data for two different types of PNC effects
in atoms. The average of R4–3 and R3–4 gives a PNC ampli-
tude that does not depend on the nuclear spin (divided by b).
The accuracy of the resulting value is very high, 0.35%. This
result is combined with the theoretical EPNC/QW and either an
experimental or theoretical value of b to determine the weak
charge and compare it with the value predicted by the SM of
the electroweak integrations [9]. In calculations, QW is trea-
ted as a parameter. The difference of R4–3 and R3–4 gives the
spin-dependent PNC amplitude, divided by b. This result is
combined with theoretical value of the spin-dependent PNC
amplitude to probe weak hadronic integrations. The dominant
contribution to the spin-dependent PNC comes from the nu-
clear anapole moment. We note that the difference of R4–3
and R3–4 was measured with only 14% accuracy.
We consider nuclear spin-independent and spin-dependent

effects separately. While the methods of the calculation the
PNC amplitudes are the same, the Hamiltonians of the two
interactions are entirely different.
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2.1 Spin-independent PNC and weak charge
The time-like component of the AeVN interaction leads to

the dominant PNC effect, caused by the exchange of a virtual
Z0 boson between an electron of the atom and a quark in the
nucleus. It can be reduced to an effective Hamiltonian in the
electron sector [28],

HPNC ¼ GF

2
ffiffiffi
2

p QWg5rðrÞ ð1Þ

where GF is the universal Fermi coupling constant, and g5 is
the Dirac matrix associated with pseudoscalars. The quantity
QW is the weak charge, defined by,

QW ¼ �N þ Zð1� 4 sin 2qÞ ð2Þ
where N is the neutron number, Z is the proton number, and
q is the Weinberg angle. Since sin2q ≈ 1/4, it follows that
QW ≈ –N. The quantity r(r) is a nuclear density function,
which is approximately the neutron density. The issue of the
nuclear density functions was discussed in detail in [29].
There are two approaches to calculating the PNC ampli-

tude, (i) via the direct solution of the perturbed Dirac equa-
tion and subsequent evaluation of the forbidden dipole
matrix element and (ii) using the sum-over-states method.
There are advantages and disadvantages to both methods.
In lowest order many-body perturbation theory, which in-

cludes the perturbation of the DHF potential induced by the
weak interaction eVHF, one first solves the perturbed Dirac
equation [28],

ðhD þ Vnuc þ eVHF þ HPNCÞej ¼ eej ð3Þ
Then, one evaluates the forbidden dipole matrix element zvw
between states v and w as,

EPNC ¼ hjwjDjejvi þ hejwjDjjvi ð4Þ
where D is the electric-dipole operator. The system of per-
turbed core and valence equations is solved self-consistently,
leading to the first-order PNC amplitude in Cs,

EPNC ¼ 0:927
ijeja0QW

�N
� 10�11

where a0 is the Bohr radius. Starting from the weak ampli-
tude in lowest order, one evaluates the corrections in second-
and third-order by weakly perturbing all orbitals appearing in
expressions for the second- and third-order dipole matrix ele-
ments. Certain classes of the dominant all-order corrections
are incorporated using the correlation potential method [30].
The advantages of the correlation potential method are dis-
cussed, for example, in [31].
In the direct sum-over-states approach [28], one considers

the sum,

EPNC ¼
X
n

hJwjDjJnihJnjHPNCjJ vi
Ev � En

þ
X
n

hJwjHPNCjJnihJnjDjJ vi
Ew � En

ð5Þ

For the 6s1/2–7s1/2 transition in Cs, the intermediate states
range over all np1/2 states. The dominant terms, n = 6, 7, 8,

9, are evaluated, for example, using the all-order (linearized
coupled-cluster) method (see [32] for a review of the formu-
lation and applications of the all-order method). The theoret-
ical error in these calculations is estimated by replacing ab
initio theoretical data in the sums by precisely known exper-
imental data or modified theory values, which include semi-
empirical estimates of the omitted correlation effects, and
noting the changes in the partial sum [28]. Contributions
from terms with n = 2 to 5 and n = 10 to ∞ are evaluated
in the weak RPA approximation in a finite basis set. The ad-
vantage of this approach is the explicit, very accurate evalua-
tion of the dominant terms with low n and the ability to
replace certain matrix elements by high-precision experimen-
tal values in a transparent way. The main disadvantage of the
this approach is the need to evaluate the tail with n > 9. In
the direct solution method, the tail terms are automatically in-
cluded. While both approaches include different terms, the fi-
nal results are remarkably close [9, 25, 28, 31, 33, 34].
Earlier calculations of the PNC amplitude in Cs carried out

in 1984–1987 [35–38] have been performed using the Dirac–
Hartree-Fock (DHF) method, random-phase approximation
(RPA), or semi-empirical potentials. Dzuba et al. [39] in-
cluded second-order many-body perturbation theory (MBPT)
corrections beyond RPA. Third-order MBPT calculation of
the PNC amplitude has been reported in [40]. The first calcu-
lation the PNC amplitude that included higher order correla-
tion corrections was carried out by Dzuba et al. [33] and was
reported to be accurate to 1%. Three dominant subsequences
of diagrams in the correlation correction to amplitude were
summed to all orders: screening of the electron–electron in-
teraction, particle–hole interaction, and the iterations of the
self-energy. The result of [31] was obtained using the same
correlation potential method, but additional terms were in-
cluded. Extensive study of the accuracy of the final result
was performed, and 0.5% uncertainty was reported.
Another all-order calculation was carried out by Blundell

et al. [25] in 1990 using a different (relativistic linearized
coupled-cluster) approach. Extensive study of the accuracy
of this approach (1%) was carried out in [28], and some addi-
tional corrections were added. Another high-precision calcu-
lation was carried out in [34]. All these high-precision
results were found to be in excellent agreement with each
other.
The most accurate evaluation of the spin-independent am-

plitude to date was carried out in [9] using the CCSDVT
method (coupled-cluster method, including single, double,
and valence triple excitations). Their result,

EPNC ¼ 0:8906
ijeja0QW

�N
� 10�11

is accurate to 0.3%. This calculations incorporated other non-
Coulomb corrections to the PNC amplitude, including Breit
(0.6%) [41, 42], QED (0.3%) [43], neutron skin [29] (0.2%),
and e–e weak interaction corrections (0.03%) [25]. Combin-
ing the final theoretical value of EPNC with the value of vec-
tor transition polarizability, b ¼ �26:957ð51Þ a30 [31], and
experimental measurements from [1], yielded the value of
the weak charge [9],

QWð 133CsÞ ¼ �73:16ð29Þexptð20Þtheor
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that is in agreement with the value predicted by the SM [44],

QSM
W ¼ �73:16ð3Þ

Combined with the results of high-energy collider experiments,
the Cs PNC study [1, 9] confirmed the energy dependence (or
“running”) of the electroweak force. The close agreement of Cs
PNC study with the SM prediction places constraints on a vari-
ety of new physics scenarios beyond the SM.
We note that the determination of the parity-conserving

quantities, such as transition matrix elements, lifetimes, polar-
izabilities, and hyperfine constants, is essential for PNC stud-
ies. The electric-dipole matrix elements contribute directly to
the PNC amplitude calculated using the sum-over-states ap-
proach and to the evaluation of the vector transition polariz-
ability b. Evaluation of the other quantities is needed in part
to demonstrate accuracy of the theoretical approaches. We
stress that an evaluation of the theoretical uncertainty is re-
quired for the interpretation of the PNC study, in terms of
the comparison with the SM. We discuss the evaluation of
the theoretical uncertainty in Sect. 3.
A program to measure PNC in Fr has been underway for

the past decade [14, 15]. An experiment to measure the nu-
clear spin-dependent PNC amplitude between ground-state
hyperfine levels in Fr isotopes was proposed in [45]. The
(currently approved) plans for Fr on-line laser trapping at the
ISAC radioactive beam facility at TRIUMF, for a measure-
ment of the nuclear anapole moment, are described in [14].
Production and trapping of Fr ions has also been reported in
[16]. Correlation potential and relativistic all-order (linearized
coupled-cluster) calculations of the EPNC for the 7s1/2–8s1/2
transition in francium were carried out in [46, 47], respec-
tively. At the present time, there is a 3% discrepancy between
the correlation potential and coupled-cluster values. Both cal-
culations quote 1% accuracy. An investigation of the sources
of the discrepancy in [47] noted a 0.6% difference owing to
the use of different nuclear parameters in the two calculations
and a 1% difference from the Breit interaction, which was
omitted in the calculation of [46].
A project to measure PNC in a single trapped radium ion

recently started at the Accelerator Institute (KVI) of the Uni-
versity of Groningen [17]. PNC amplitude in Ra+ has been
evaluated in [48–50]. Parity-nonconserving s–d amplitudes
in Cs, Fr, Ba+, and Ra+ have been calculated in [49], using
a hybrid mixed-states sum-over-states approach.
PNC studies have been carried out for the 6p1/2–6p3/2 tran-

sition in 205Tl in Oxford [2] and Seattle [3]; for the 6 3P0–
6 3P1 transition in 208Pb in Seattle [5] and Oxford [6]; and
for the 4S3/2–2D3/2 transition in 209Bi in Oxford [4]. Re-meas-
urement of the E2/M1 ratio for the 6p1/2–6p3/2 transition in Tl
[51] helped reconcile differences between the Oxford and Se-
attle measurements for that atom. The most recent calculation
of the PNC amplitude in Tl [34] was estimated to be accurate
to about 3%.
The (6s2)1S0–(6s5d)3D1 PNC transition in atomic Yb is

about 100 times larger than the 6s–7s transition in cesium
[52], being enhanced by mixing of the final state with the
nearby (6s6p)1P1 state. A recent experiment [13] confirmed
such a large PNC effect. Measurements of PNC in ytterbium
are particularly interesting, since there are seven naturally oc-
curring isotopes, 168–176Yb, giving the possibility of eliminat-

ing uncertainties arising from atomic structure calculations
by comparing PNC amplitudes from different isotopes. The
best many-body calculation of the PNC amplitude in Yb
[53] gave a value accurate to about 20%. In Sect. 4, we dis-
cuss a novel approach that combines linearized coupled-clus-
ter method used in evaluation of the Cs PNC amplitude with
the CI approach. The development of this method is aimed at
a significant improvement of the theoretical accuracy.
A Stark interference experiment to detect PNC mixing be-

tween two nearly degenerate levels of opposite parity,
(4f105d6s) [10] and (4f95d26s) [10] in dysprosium has been
carried out [8]. This experiment gave a result that differed
substantially from the theoretical result obtained in a multi-
configuration Dirac–Fock (CI) calculation [54]. Optical rota-
tion parameters for transitions between 7FJ and 5DJ′ states in
the (4f66s2) multiplet of samarium were measured [7]. The
upper state levels are nearly degenerate, with levels of oppo-
site parity from the (4f66s6p) configuration, leading to an ex-
pected enhancement of the PNC amplitude. The weak
interaction matrix elements |HW|, extracted from experiment,
ranged from 1 to 30 kHz, which was one to two orders of
magnitude smaller than what was expected from semi-empir-
ical calculations. Significant improvement in theoretical
methodology is needed to provide reliable estimate of the
PNC effects in these complicated systems.

2.2 Spin-dependent PNC and anapole moment
The spin-dependent contribution to the PNC amplitude has

three distinct sources: the nuclear anapole moment, the Z-ex-
change interaction from nucleon axial-vector currents (AnVe),
and the combined action of the hyperfine interaction and
spin-independent Z-exchange from nucleon vector (VnAe) cur-
rents. The anapole moment contribution strongly dominates.
The nuclear anapole moment and the Z-exchange interaction
from nucleon axial-vector currents (AnVe) interactions can be
represented by the same Hamiltonian,

HðiÞ ¼ Gffiffiffi
2

p kia � IrðrÞ ð6Þ

In the equation above, subscript i = a, 2 refers to the anapole
moment and the axial-vector contributions, respectively; G is
the universal weak coupling constant, I is the nuclear spin,
and r(r) is a normalized nuclear density function. The di-
mensionless constant ka is used to characterize the anapole
moment [55]. The constant k2 = 0.0140 was calculated in
[55]. The total spin-dependent PNC contribution to the elec-
tric-dipole matrix element 〈7sFF||z||6sFI〉 is given by [56],

h7sFF k D k 6sFIiPNC ¼
ðka þ k2 þ khfÞh7sFF k D k 6sFIið2;aÞ ð7Þ

The combined hyperfine and the spin-independent
Z-exchange interactions are characterized by the constant khf.
It was calculated using the random-phase approximation
(RPA) to be khf = 0.0049 in [56].
In [57], the spin-dependent PNC amplitude was evaluated

using a semi-empirical method. DHF calculation was carried
out in [28]. The relativistic Hartree–Fock method and
Brueckner orbitals were used in [58].
The study of PNC in cesium led to a first measurement of

the nuclear anapole moment and allowed to place constraints
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on PNC meson coupling constants [10, 11, 55, 59]. These
constraints were found to be in disagreement with the ones
obtained from nuclear parity violating experiments. These de-
terminations of the PNC meson coupling constants were
based on the calculation of the main part of the spin-de-
pended PNC amplitude from [57, 58].
The discrepancy of the nuclear and atomic PNC studies

motivated further study of the spin-depended amplitude. In
[12], the spin-depended EPNC was calculated using a relativis-
tic all-order method to about 1% precision. Combining the
theoretical results for the spin-dependent PNC amplitude
with the experimental value of D[Im(EPNC)/b]34–43 =
–0.0077(11) mV/cm from [1], and b ¼ 27:02ð8Þ a30 [27]; Sa-
fronova et al. [12] obtained the result k = ka + k2 +
khf = 0.107(16). This value is rather close to the previous
value of 0.112(16) from [10]. The uncertainty in both values
is the experimental one (14%).
Safronova et al. [12] reported that individual PNC matrix

elements significantly change with a more complete inclusion
of the correlation corrections, whereas changes in the total
spin-dependent PNC amplitude are relatively small. The
value of the anapole coupling constant ka = 0.88(12) calcu-
lated in [12] is only 5% lower than the value used in [10,
59]. Therefore, a more accurate evaluation of the
spin-depended PNC in Cs did not resolve the discrepancies
in the constraints on PNC meson coupling constants. We
note that analysis of nuclear parity violation within the
framework of effective field theory (EFT) is being reformu-
lated at the present time [60].
Further experiments capable of accurate measurement of

the spin-depended PNC interaction effects are needed for fur-
ther understanding of the discrepancies between nuclear and
atomic PNC studies.

3. Evaluation of theoretical uncertainties
We have shown above that the analysis of the PNC studies

requires the evaluation of the complete (rather than numeri-
cal) theoretical uncertainties. Many other applications (for ex-
ample, evaluation of the blackbody radiation shifts for atomic
clock research) require such studies as well. This issue was
discussed in detail in a review of the blackbody radiation
shift calculations [24]. Benchmark comparisons of theory
and experiment carry more value when the theoretical results
are accompanied by uncertainty evaluations. Evaluations of
the theoretical uncertainties are still rare and cannot be car-
ried out in all cases and for all of the methods. Below, we
discuss how some theoretical uncertainties may be evaluated.
The sum-over-states approach to the calculation of the PNC
amplitude discussed above is based on the evaluation of the
various types of matrix elements. Therefore, it is necessary
to be able to evaluate uncertainties of the individual matrix
elements (for example, E1 matrix elements) to evaluate final
uncertainties of the composite quantities, such as PNC ampli-
tude. We discuss the evaluation of the uncertainties in the re-
sults obtained by the relativistic all-order method [32]. The
strategies to evaluate the uncertainties of the matrix elements
within the framework of this approach include the approxi-
mate evaluation of the size of the correlation correction, eval-
uation of the size of the higher order corrections, study of the
order-by-order convergence of perturbation theory, study of

the breakdown of the various all-order contributions and
identification of the most important terms, and
semi-empirical determination of dominant missing contribu-
tions. We illustrate these strategies using the example of the
calculation of the atomic quadrupole moment of the 3d5/2
state in Ca+ [61]. This is the most extensive evaluation of
the uncertainty in a single matrix element to our knowledge.
It was motivated by some controversy between other high-
precision calculations and experimental measurement (see
[61] for the discussion of this issue). Moreover, this property
has been measured to rather high precision (1%) in [62].
The atomic quadrupole moment Q(gJ) is a diagonal matrix

element of the electric quadrupole (E2) operator, defined as,

QðgJÞ ¼ ð2JÞ!ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2J � 2Þ!ð2J þ 3Þ!

p hJðgJÞ k Q k JðgJÞi ð8Þ

Strategies to evaluate its uncertainty require evaluations of
Q(gJ) in as many different approximations of the increased
accuracy as possible. We list the value of the quadrupole mo-
ment of the 3d5/2 state in Ca+, calculated using the ab initio
lowest order and third-order many-body perturbation theory
(MBPT), single-double linearized coupled-cluster method
(LCCSD), single-double linearized coupled-cluster method
with partial valence triple excitations (LCCSDvT), and sin-
gle-double coupled-cluster approach (CCSD) with all SD
nonlinear terms included. All data are listed in atomic units.

Lowest-order 2.451
Third-order 1.610
LCCSD 1.785
LCCSDvT 1.837
CCSD 1.822

The sequence of these values gives the estimate of the con-
tribution of the correlation corrections as well as importance
of the fourth and higher order correction, nonlinear terms,
and triple excitations. The final evaluation of the uncertainty
required identification and elaborate semi-empirical evalua-
tion of the missing correlation effects [28, 32]. We note that
the scaling factors are different in the cases of the LCCSD,
LCCSDvT, CCSD methods, since they depend on the corre-
lation energies obtained in these approximations.

LCSSDvT 1.837
LCCSD scaled 1.849
LCSSDvT scaled 1.836
CCSD scaled 1.851
Final 1.849(13)
Expt. 1.83(1)

The spread in the resulting scaled values and the ab initio
LCCSDvT values that represent the most complete ab initio
result is taken as the uncertainty of the final (scaled LCCSD)
result. The evaluation of the theoretical uncertainties has
been discussed the detail in the recent review [63].

4. CI + all-order method
The relativistic all-order [32] and correlation potential [30]

methods yielded very accurate results for the PNC amplitude
and other properties of the monovalent systems, such as Cs,
Ba+, Fr, and Ra+. However, neither of this methods can be
straightforwardly extended to evaluate the PNC amplitudes
in more complicated systems such as Tl or Yb. In the case
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of the all-order method, the number of terms in the matrix
element expression increases from twenty for the monovalent
systems to hundreds for divalent systems. Moreover, the all-
order method is based on the Rayleigh–Schrödinger many-
body perturbation theory. Use of this approach for the two-
particle systems will result in the problem of accidentally
small denominators and resulting divergencies in the iteration
procedures. Generally, perturbative approaches are not well-
suited for the treatment of the very strong valence–valence
interactions. Therefore, the CI method was combined with
the second-order many body perturbation theory (MBPT) in
[64] to use the advantages of both methods. The CI +
MBPT approach allows one to incorporate core excitations
in the CI method by constructing an effective Hamiltonian
that includes certain perturbation theory terms. The CI
method is then implemented with the modified Heff to obtain
improved energies and wave functions. This method was ap-
plied to the calculation of atomic properties of various sys-
tems in a number of works (see [65–69] and refs. cited
therein). In particular, it was applied to the evaluation the
PNC amplitudes in Tl [34] and Yb [53]. The main problem
of this approach is the deterioration of its accuracy for heav-
ier systems owing to incomplete inclusion of the core-valence
corrections, in particular for the two-body part of the effec-
tive Hamiltonian.
Using the all-order (linearized coupled-cluster) approach to

construct the effective Hamiltonian leads to much more com-
plete inclusion of the correlation correction. In the CI + all-
order approach, the effective Hamiltonian is first constructed
using the second-order MBPT. Then, the most important
terms are recalculated using the all-order method. Therefore,
the core–core and core–valence sectors of the correlation cor-
rections for systems with a few valence electrons are treated
with the same accuracy as in the all-order approach for the
monovalent systems. The CI method is used to treat va-
lence–valence correlations. This method was first introduced
in [70]. Numerous tests have been conducted to establish that
numerical errors (associated with the size of the initial B-
spline finite basis set, saturation of the CI space, and the se-
lection of the second-order and all-order subsets) are below
the expected accuracy of the method. Comparisons of the
CI + MBPT and CI + all-order binding energies for the
ground and excited states of a number of two-electron sys-
tems demonstrate that the CI + all-order energies are usually
more accurate by at least a factor of three [70]. The prelimi-
nary calculations of polarizabilities in Ca and Sr indicate sig-
nificantly better agreement of the CI + all-order ab initio
results with recommended values from [71], in comparison
with the CI + MBPT approach. At the present time, the cor-
rections to the one-body operators, such as electric-dipole or
PNC operators, are only done at the random-phase approxi-
mation level in the CI + all-order approach. In the next steps
of the CI + all-order method development, the full all-order
terms excluding the ones accounted for by the CI part of the
calculation will be included for further improvement of its
accuracy. Next, the triple excitations will be included pertur-
batively. At that level of the inclusion of the correlation cor-
rection, the method should be sufficiently complete to carry
out the evaluation of the PNC amplitudes in Tl and Yb with
significant improvement of the accuracy, in comparison with
the previous best calculations.

5. Conclusion
We reviewed applications of the atomic calculations to the

study of fundamental interactions, in particular parity viola-
tion. The present status of the theoretical calculations of the
PNC amplitude and experimental progress in various systems
was discussed. The theoretical precision in the PNC ampli-
tude calculation in Cs has finally improved to exceed the ex-
perimental uncertainty [1], stimulating the need for further
experimental progress. In the case of divalent and more com-
plicated systems, a significant improvement in theoretical
precision is needed. Progress in the development of the new
high-precision method, combining the linearized coupled-
cluster method with configuration integrations, was dis-
cussed. The development of this method is aimed at bridging
the gap between the accuracy of the theoretical and experi-
mental PNC studies for more complicated systems.
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