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State-insensitive bichromatic optical trapping
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We study a scheme for state-insensitive trapping of neutral atoms by using light with two independent
wavelengths. In particular, we describe the use of trapping and control lasers to minimize the variance of the
potential experienced by a trapped Rb atom in ground and excited states. We present calculated values of
wavelength pairs for which the 5s and 5p3/2 levels have the same ac Stark shifts in the presence of two laser
fields.
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I. INTRODUCTION

The emerging advantages of using transitions between
different atomic electronic configurations for frequency stan-
dards and quantum information processing are accompanied
by disadvantages with respect to previous methods in which
atomic qubits were hyperfine states of the same configuration.
In the latter case, the energy shifts of states induced by external
trapping fields are small, and can be calculated to an accuracy
that usually does not make a significant contribution to the
uncertainty budget. When qubits are associated with different
configurations, on the other hand, the magnitude and even
the sign of differential field shifts are uncontrolled in the first
instance.

The ability to trap neutral atoms inside high-Q cavities
in the strong coupling regime is of particular importance for
quantum computation and quantum communication schemes,
where it is essential to precisely localize and control neutral
atoms with minimum decoherence. In a far-detuned optical
dipole trap, the potential experienced by an atom in its ground
state can be either attractive or repulsive, with respect to the
location of peak light intensity, depending on the sign of the ac
Stark shift due to the trapping light. Excited-state atoms in the
same trap may experience an ac Stark shift with an opposite
sign, which affects the fidelity of experiments in which excited
states are temporarily occupied, such as the implementation of
the Rydberg quantum gate [1–5].

The same problem (i.e., different Stark shifts of two
states) affects optical frequency standards based on atoms
trapped in optical lattices because it can introduce a significant
dependence of the measured frequency of the clock transition
upon the lattice wavelength. Katori et al. [6] proposed the idea
of using a trapping laser tuned to a magic wavelength, λmagic,
at which the ac Stark shift of the clock transition is eliminated.
The magic wavelength of the 87Sr 1S0-3P ◦

0 clock transition was
found to be 813.5 ± 0.9 nm in Ref. [7] by investigating the
wavelength dependence of the carrier linewidth. This magic
wavelength was later determined with even higher precision
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to be 813.427 35(40) nm [8]. In a cavity quantum electrody-
namics experiment, McKeever et al. [9] demonstrated state-
insensitive trapping of Cs atoms at λmagic ≈ 935 nm while still
maintaining a strong coupling for the 6p3/2-6s1/2 transition.

Magic wavelengths for the np-ns transitions in alkali-metal
atoms from Na to Cs have been previously calculated by
Arora et al. [10], using a relativistic all-order method. This
was accomplished by matching the ac polarizabilities of the
atomic npj and ns states. The data in Ref. [10] provide a
wide range of magic wavelengths for alkali-metal atoms. In
the case of the np3/2-ns transitions, the magic wavelengths
need to be determined separately for the mj = ±1/2 and
mj = ±3/2 states, due to the rank-2 tensor contribution to
the polarizability of the np3/2 level. Furthermore, there is a
substantial reduction in the number of magic wavelengths
for the mj = ±3/2 states due to selection rules for linear
polarization. For instance, three out of the six values of λmagic

suggested for the 5p3/2-5s transition in Rb are present only for
the mj = ±1/2 states. In such cases, the magic wavelength
becomes dependent on the particular hyperfine state of the
atom. Some of the magic wavelengths are also in regions
that are inconvenient for present laser technology. Out of the
remaining three wavelengths considered in [10], the λmagic at
791 nm has opposite signs for the Stark shifts for mj = ±3/2
and mj = ±1/2 states, which makes this wavelength of limited
practical use. The second magic wavelength at 776 nm is
in close proximity to the Rb 5p-5d resonance transition
at 775.8 nm, which could mediate undesired two-photon
transitions. The third magic wavelength at 637 nm exists
for all states, but its corresponding polarizability is too small
for convenient trapping (it is −500 a3

0 , where a0 is the Bohr
radius). In summary, the single-laser scheme offers few cases
in which the magic wavelengths are convenient for state-
insensitive trapping of Rb atoms [10].

In this paper, we investigate an obvious mechanism for
remediating uncontrolled frequency shifts in transitions
between different configurations: the application of a second,
“control,” optical field to a system of optically trapped atoms.
We outline the general principles of this approach, and apply
it in detail to some cases in Rb. Rubidium is chosen because it
offers a baseline of comparison with previous, monochromatic
attempts at control, and this serves to illustrate the advantages
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of the bichromatic approach that we believe will have wide
applicability.

Specifically, we find the combinations of two wavelengths
that allow us to match ac Stark shifts of the Rb atom in 5s

and 5p3/2 states. In this scheme, a combination of trapping
and control lasers allows one to minimize the difference in
the trapping potentials experienced by the atom in the ground
and excited states. This approach significantly increases the
number of wavelengths at which state-insensitive trapping
experiments can be conducted.

We note that this scheme involves maintaining a fixed
intensity ratio of two lasers to a certain precision over the extent
of the experimentally relevant region. We have investigated
the sensitivity of the bichromatic scheme to variation in the
intensity ratio. The results are described at the end of Sec. III.
The specific geometric configuration that will maximize the ac
Stark shift cancellation over the required region will depend
upon a number of experimental parameters, such as laser
wavelengths, polarization, stabilization of lasers, and trap
configuration. We note that there has been an experimental
demonstration of light-shift engineering using an auxiliary
laser to implement spatially selective optical lattice loading
by Griffin et al. [11].

The first step in the realization of this scheme is to calculate
the Stark shifts of the 5s and 5p3/2 states of the Rb atom
as a function of frequency. We use the relativistic all-order
method [10,12,13] for the calculation of the reduced electric-
dipole matrix elements involved in the evaluation of frequency-
dependent polarizabilities. In the second step, we calculate the
shift in energies of atomic states as a function of the two
laser frequencies. The wavelengths are determined where the
ac Stark shifts of the 5s and 5p3/2 levels match according to
criteria that are described in the following. Several specific
cases are illustrated in detail.

II. FREQUENCY-DEPENDENT POLARIZABILITY

The second-order energy shift �E of a monovalent atom
in a state v is parameterized as the sum of scalar α0(ω) and
tensor α2(ω) polarizabilities

�E = −1

2
α0(ω)ε2 − 1

2
α2(ω)

3m2
j − jv(jv + 1)

jv(2jv − 1)
ε2, (1)

where the laser frequency ω is assumed to be several linewidths
off-resonance, jv is the angular momentum, ε is the rms
magnitude of the electric field, and the polarization vector
of the linearly polarized light defines the z direction. The
valence contribution to frequency-dependent scalar and tensor
polarizability is evaluated as the sum over intermediate k states
allowed by the electric-dipole transition rules [14]

αv
0 (ω) = 2

3(2jv + 1)

∑
k

〈k‖d‖v〉2(Ek − Ev)

(Ek − Ev)2 − ω2
,

αv
2 (ω) = −4C

∑
k

(−1)jv+jk+1

{
jv 1 jk

1 jv 2

}
(2)

× 〈k‖d‖v〉2(Ek − Ev)

(Ek − Ev)2 − ω2
,

where C is given by

C =
[

5jv(2jv − 1)

6(jv + 1) (2jv + 1) (2jv + 3)

]1/2

(3)

and 〈k‖d‖v〉 are the reduced electric-dipole matrix elements.
The experimental energies Ei of the dominant states con-
tributing to this sum have been compiled for the alkali
atoms in Refs. [15,16]. In addition to the scalar and tensor
valence contributions, there is a scalar core contribution to
the polarizability, αcore. For the frequency range considered in
this work, αcore has a very small ω dependence. The static
core polarizability value calculated using a random-phase
approximation [17] has been used in our calculations without
loss of accuracy (i.e., uncertainty of this term gives negligible
contribution to the total uncertainty).

Unless stated otherwise, we use atomic units [a.u.] for all
matrix elements and polarizabilities throughout this paper:
the numerical values of the elementary charge e, the reduced
Planck constant h̄ = h/2π , and the electron mass me, are set
equal to 1. The atomic unit for polarizability can be converted
to SI units via α/h [Hz/(V/m)2] = 2.488 32 × 10−8α [a.u.],
where the conversion coefficient is 4πε0a

3
0/h and the Planck

constant h is factored out to provide direct conversion into
frequency units; a0 is the Bohr radius and ε0 is the electric
constant.

The ground and excited state ac polarizabilities of the
alkali-metal atoms were previously calculated accurately in
Refs. [10,13,18,19]. A detailed description of the polarizability
calculations for atomic Rb is given in Refs. [10,13]. Briefly, the
sums over intermediate states k in the formulas are separated
into a dominant part αmain that contains the first few terms
and a remainder αtail. In our Rb calculations, we include all
ns states up to 10s and all nd states up to 9d in the αmain

term. The αtail contribution is calculated in the Dirac-Fock
(DF) approximation. We use a complete set of DF wave
functions on a nonlinear grid generated using B-splines [20]
constrained to a spherical cavity. A cavity radius of 220 a0

is chosen to accommodate all valence orbitals of αmain. The
basis set consists of 70 splines of order 11 for each value of
the relativistic angular quantum number κ .

In the calculation of the main term, the 5p3/2-5s matrix
elements are taken from Ref. [21], and the 5p3/2-4dj E1
matrix elements are taken to be the recommended values
derived in Ref. [22] from the Stark shift measurements
reported in [23]. We use the all-order method (linearized
version of the coupled cluster approach), which sums infinite
sets of many-body perturbation theory terms, for the calcula-
tion of all other matrix elements in the dominant part αmain.
A detailed description of the all-order method is given in
Refs. [12,24]. For some matrix elements, it was possible to
carry out semi-empirical scaling of the all-order values to
include some additional important higher-order corrections.
The scaling procedure has been described in Refs. [12,14,25].
The resulting frequency-dependent polarizabilities are used
to find convenient combinations of trap and control laser
wavelengths that yield the same ac Stark shift for Rb atoms in
the ground and excited 5p3/2 levels.
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FIG. 1. (Color online) Surface plot for the 5s and 5p3/2 mj =
±1/2 state polarizabilities as a function of laser wavelengths λ1 and
λ2 for equal intensities of both lasers.

III. RESULTS

In this section, we list a few appropriate combinations
found for control and trap laser wavelengths where the 5s

and 5p3/2 state polarizabilities of Rb are closely matched. For
monochromatic light, a magic wavelength is represented by
the point at which two curves, α5s(ω) and α5p(ω), intersect
as a function of the frequency ω. In the bichromatic case, on
the other hand, we have two additional degrees of freedom,
the control frequency and the ratio of laser intensities. Thus,
bichromatic magic wavelengths are represented as curves
resulting from the intersection of surfaces.

To illustrate this point, we display sample cases of such
surface plots for the mj = ±1/2 and mj = ±3/2 states in
Figs. 1 and 2, respectively. The intensity of both lasers is taken
to be the same, so that the energy-level shift is proportional
to the sum of two polarizabilities. This is plotted on the
z axis. The trap and control laser wavelengths are given
on the x and y axes, respectively. The total polarizability
of the 5p3/2 state depends upon its mj quantum number,
and it is calculated as a sum or difference of the scalar α0

and tensor α2 polarizabilities [i.e., α(5p3/2) = α0 − α2 for
mj = ±1/2 states and α(5p3/2) = α0 + α2 for mj = ±3/2
states]. Therefore, we discuss the results for mj = ±1/2 and
mj = ±3/2 states separately. We also find some appropriate
trap and control laser wavelength combinations that have
similar magic wavelengths for each mj state. As illustrated by
Figs. 1 and 2, there is a large number of possible combinations
of trap and control wavelengths that will result in the same ac
Stark shift of both levels.

In Table I, we list a number of sample trap and control wave-
length combinations which can be used for state-insensitive
trapping of Rb atoms in the 5s and 5p3/2 states. Out of a
number of combinations found, we list only those where one
of the laser wavelengths is twice the other. This is a case of
particular practical interest since it is attainable by frequency
doubling of the longer-wavelength laser. The combinations
are listed for various trap and control laser intensity ratios as
indicated to illustrate the ability to tune the magic wavelength
pairs by varying the relative intensities.

FIG. 2. (Color online) Surface plot for the 5s and 5p3/2 mj =
±3/2 state polarizabilities as a function of laser wavelengths λ1 and
λ2 for equal intensities of both lasers.

The percentage difference between the total polarizabilities
of the 5s and 5p3/2 states for the cases listed in Table I is less
than 1% taking into account uncertainties

We discuss the magic wavelengths for the mj = ±1/2
states first. For equal intensities, the combination with λ1 =
788 nm and λ2 = 1576 nm, may be particularly useful since
the resulting polarizability is positive and the atoms in red
detuned traps are attracted toward the maximum of the field
intensity [26,27]. Applying a control laser with double the
trap laser wavelength creates a deeper trapping potential for the
atom in the ground state and minimizes the difference between
the Stark shifts for the ground and excited states. For the
5p3/2,mj = 1/2 state the polarizability is negative at 788 nm
(−10 279 a3

0) and larger and positive at 1576 nm (15 194 a3
0).

The uncertainties in the polarizabilities at combinations which
are close to resonance wavelengths are generally higher. The
value of αsum for some of the combinations in Table I is
negative, so that the atoms become low-field seekers. A number
of groups have suggested blue detuned or dark optical traps
where atoms are surrounded by repulsive light fields and
therefore are captured in dark regions without light [26,28].
In contrast to the monochromatic case, where very few
convenient magic wavelengths were found for mj = ±3/2
states, a number of “dark” magic wavelengths for Rb are found
in the present bichromatic treatment.

We also found a few laser wavelength combinations that
support state-insensitive simultaneous trapping for all mj

states. Examples of such cases are grouped together in the first
few rows of Table I. The magic wavelength combination for the
|mj | = 1/2 case is given first, and the corresponding |mj | =
3/2 magic wavelength combination is given in the following
row. We illustrate the example of such magic wavelength
combinations (listed in rows 3 and 4 of Table I) in Fig. 3, where
we plot surfaces of the 5s and 5p3/2 |mj | = 1/2,3/2 state
polarizabilities for λ1 = 806–826 nm and λ2 = 1615–1645
nm. The intensities of both lasers are taken to be equal.

As we mentioned in the Introduction, our scheme involves
maintaining a fixed intensity ratio of two lasers to a certain
precision. We study the effect of variation in the intensity ratio
(ε2/ε1)2 on the polarizabilities of the 5s and 5p3/2mj states
at magic combinations of the trap and control wavelengths by
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TABLE I. Magic combinations of the trap and control wavelengths λ1, λ2 = 2λ1 for the 5p3/2mj -5s transition in Rb and the corresponding
sum of polarizabilities at these wavelengths. The wavelengths (in vacuum) are given in nm and polarizabilities are given in atomic units. ε2

1

and ε2
2 represent the intensities of the two laser beams, respectively. αsum = α1 + (ε2/ε1)2α2, so that the energy level shift is proportional to

αsumε2
1 .

(ε2/ε1)2 |mj | λ1 λ2 αsum(5s) αsum(5p3/2)

1 1/2 788 1576 4990(18) 4914(190)
1 3/2 785 1570 13 240(26) 13 332(210)

1 1/2 814 1628 5189(5) 5194(94)
1 3/2 810 1620 6086(6) 6070(100)

2 1/2 784.3 1568.6 16 819(30) 16 069(436)
2 3/2 782.7 1565.4 30 086(50) 29 715(470)

2 1/2 798.5 1597 17 189(18) 17 297(260)
2 3/2 799 1598 15 611(16) 15 874(260)

3 1/2 782.9 1565.8 28 017(46) 27 317(700)
3 3/2 781.9 1563.8 46 328(70) 46 387(740)

3 1/2 796.8 1593.6 29 026(34) 29 336(410)
3 3/2 797.2 1594.4 24 820(28) 25 059(402)

1 1/2 715 1430 −1047(2) −1031(84)
1 1/2 974–978 1948–1956 1271(1)–1257(1) 1279–1240(34)
1/2 1/2 727 1454 −1641(2) −1648(55)
1/2 3/2 787.4 1574.8 6109(20) 6054(100)
1/3 1/2 736 1472 −2113(3) −2094(50)
1/3 1/2 748 1496 −2963(4) −2988(80)
1/3 3/2 576 1152 −152(1) −153(34)
1/3 3/2 639 1278 −425(1) −422(44)

varying the intensity ratio by 1% to 20% for the examples
from Table I. The results are summarized in Table II. The last
column gives the difference between αsum(5s) and αsum(5p3/2)
relative to αsum(5s) in percent.

Our studies indicate that small (around 1%) fluctuation in
the intensity ratio does not significantly affect the degree of

FIG. 3. (Color online) Magic wavelength pairs for λ1 =
806–826 nm and λ2 = 1615–1645 nm and equal intensities of both
lasers.

Stark shift cancellation. Larger variations in the intensity ratios
(5%–20%) cause increased differences in Stark shifts of two
levels, but would still yield a large degree of cancellation.

The magic wavelength may be further tuned by adjusting
the intensity ratio of the two lasers as illustrated in Fig. 4.

TABLE II. Effect of variation in the intensity ratio (ε2/ε1)2 on the
polarizabilities of the 5s and 5p3/2mj states at magic combinations
of the trap and control wavelengths. The wavelengths (in vacuum)
are given in nm and polarizabilities are given in atomic units. ε2

1

and ε2
2 represent the intensities of the two laser beams, respectively.

αsum = α1 + (ε2/ε1)2α2, so that the energy-level shift is proportional
to αsumε2

1 . Last column gives relative difference between αsum(5s) and
αsum(5p3/2).

|mj | λ1 λ2 (ε2/ε1)2 αsum(5s) αsum(5p3/2) Dif.

1/2 788 1576 1 4990(18) 4914(190) 1.5%
0.99 4986(18) 4763(190) 4.5%
1.01 4994(18) 5066(190) 1.4%
1.05 5011(18) 5674(200) 13%

3/2 785 1570 1 13 240(26) 13 332(210) 0.7%
1.01 13 245(26) 13 462(220) 1.6%
1.10 13 282(26) 14 635(240) 10%
1.20 13 325(26) 15 938(250) 20%

1/2 814 1628 1 5189(5) 5194(94) 0.1%
1.01 5193(5) 5273(95) 1.5%
1.10 5230(5) 5989(100) 14.5%

1/2 974 1948 1 1271(1) 1279(34) 0.6%
1.05 1290(1) 1412(35) 9.5%
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FIG. 4. (Color online) Magic wavelength for the 5s and
5p3/2 mj = ±1/2 states for λ1 = 800–810 nm and λ2 = 2λ1 for
various intensities of both lasers. The intensity ratio (ε2/ε1)2 ranges
from 1 to 2.

The magic wavelength for the 5s and 5p3/2 |mj | = 1/2 states
for λ1 = 800–810 nm and λ2 = 2λ1 are shown for various
intensities of both lasers. The intensity ratio (ε2/ε1)2 ranges
from 1 to 2. This figure also illustrates the variation of ac Stark
shift cancellation with the large (by a factor of 2) change in
the intensity ratio.

IV. CONCLUSION

In summary, we have explored a bichromatic scheme for
state-insensitive optical trapping of the Rb atom. Due to the ex-
tensive development of first-principles atomic structure theory,
semiempirical corrections, and computational methodology
we are able to explore a wide range of parameter space with
reasonable confidence in the uncertainties of our calculations.
We have recently completed a comprehensive survey of
calculations of dc polarizabilities for which there exist copious
experimental data for comparison within the clearly stated
ranges of uncertainty [29]. In this paper, we specifically
explored a case of the Rb atom, where the magic wavelengths
associated with monochromatic trapping were sparse and
relatively inconvenient. We have found that the bichromatic
approach yields a number of promising wavelength pairs which
are discovered with straightforward parameter choices such
as equal laser intensities and λ2 = 2λ1. The methodology
developed in this work allows us to explore specific cases
of interest that may arise in the future experiments where it is
essential to precisely localize and control neutral atoms with
minimum decoherence.
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