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Abstract
Transition rates, oscillator strengths and line strengths are calculated for electric-dipole (E1)
transitions between even-parity 4s2, 4p2, 4s4d, 4d2, 4p4f and 4f2 states and odd-parity 4s4p,
4s4f, 4p4d and 4d4f states in Zn-like ions with the nuclear charges ranging from Z = 32 to
100. Relativistic many-body perturbation theory (RMBPT), including the Breit interaction, is
used to evaluate retarded E1 matrix elements in length and velocity forms. The calculations
start from a 1s22s22p63s23p63d10 Dirac–Fock potential. First-order RMBPT is used to obtain
intermediate coupling coefficients and second-order RMBPT is used to calculate transition
matrix elements. Contributions from negative-energy states are included in the second-order
E1 matrix elements to ensure the gauge independence of transition amplitudes. Transition
energies used in the calculation of oscillator strengths and transition rates are from
second-order RMBPT. Ground state scalar α0(4s2 1S0) polarizabilities are calculated for
Zn-like ions from Z = 33 to 100. To evaluate the α0(4s2 1S0) polarizabilities, we calculate
RMBPT energies for the odd-parity 4l5l′ complex with J = 1 and line strengths between the
even-parity 4l4l′ complex with J = 0 and the odd-parity 4l5l′, 4l6l′ complexes with J = 1.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The group II-like elements are presently of significant interest
to various AMO fields owing to the development of atomic
clocks with various group II atoms (Sr, Hg, Yb, etc). In
fact, 5s2 1S0–5s5p 3P0 transition frequency in 88Sr has been
recommended as the secondary representation of a SI second
by the International Committee for Weights and Measures
(CIPM) [1]. These atoms have also become of recent interest
to quantum information [2]. These applications require good
knowledge of atomic properties, such as transition rates and
polarizabilities. For example, atomic clock schemes are
subject to the blackbody radiation shift that is very hard to
measure and needs to be calculated. Quantum information
proposals require knowledge of wavelengths where atomic
dynamic polarizabilities of group II atoms are zero. Study
of degenerate quantum gases requires understanding of the

long-range interaction coefficients. New methods for studying
group II atoms are currently under development [3]. The main
problem faced when developing a novel high-precision method
for group II atoms is the lack of benchmark experimental
data and comprehensive analysis and comparison of theory
and experiment. While second-order relativistic many-body
perturbation theory (RMBPT) is not sufficiently precise for
accurate prediction of the required properties of neutral
systems for some of the applications, it is quite precise for
the ions of the corresponding isoelectronic sequence. The
second-order calculations allow us to study possible issues that
may arise when perturbation theory is combined with other
methods, such as configuration interaction (CI) to produce
more accurate results [4]. Second-order calculations also give
the initial approximation for more accurate coupled-cluster
approaches [5]. Zn-like systems are of particular interest
owing to the convergence issues of the all-order methods [5]
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due to large d-shell excitations. The goal of the present study
is to fill gaps in our understanding of Zn-like ion properties
and to analyse existing results for our better understanding of
the properties of group II atoms in general. Our results are
compared extensively with other calculations and experiment
where available.

Recently, the relativistic configuration-interaction (CI)
method with the numerical Dirac–Fock wavefunctions
generated in the field of ab initio screened model potential
was used by Glowacki and Migdalek [6] to compute
oscillator strengths for the spin-allowed and spin-forbidden
4s2 1S0–4s4p 1,3P1 transitions in neutral zinc. Lifetimes of
the 4s4p 1,3P1 levels in Ga II were evaluated using the CIV3
code by McElroy and Hibbert in [7]. The CIV3 code
includes extensive CI calculations. Relativistic effects were
introduced via the Breit–Pauli Hamiltonian. Core polarization
effects were included by means of explicit CI [7]. Flexible
Atomic Code (FAC) was used recently in [8] to calculate
energy levels, oscillator strengths and electron impact collision
strengths for Ge-, Ga-, Zn-, Cu-, Ni- and Co-like Au ions.
The wavelengths and transition probabilities for EUV and
x-ray lines in the spectra from Yb40+ to U62+ along the
zinc isoelectronic sequence were calculated by Quinet et al
[9]. The multiconfiguration Dirac–Fock (MCDF) model was
used. Results were reported for the 4s2–4s4p, 4s4p–4p2

and 4s4p–4s4d transitions [9]. Relativistic many-body
calculations of the energies of n = 4 states along the zinc
isoelectronic sequence were recently reported by Blundell et al
[10]. The GRASP92 multi-configuration Dirac–Hartree–Fock
package was recently [11] employed to calculate excitation
energies, ionization potentials and oscillator strengths for
all neutral and up to five times ionized species of element
Cp, Z = 112. Weighted oscillator strengths in Coulomb
and Babushkin gauges for E1 transitions in Zn-like Ga II
were recently reported by Jönsson et al [12]. The graspVU
multiconfiguration Dirac–Hartree–Fock package was used in
[12] to evaluate energies, oscillator strengths and lifetime
data in Zn-like Ga II. The same package was used in [13] to
evaluate rates of forbidden lines within the 4s4p 3P term and
between this term and the 4s2 1S0 ground state for ions between
Z = 30 (Zn) and Z = 47 (Ag17+). Multipole (E1, M1, E2
and M2) transition rates were calculated for the 1S0– 1,3P1

electric-dipole, 1S0– 3P2 magnetic-quadrupole and 3PJ – 3PJ ′

magnetic-dipole and electric-quadrupole transitions [13]. The
GRASP2k multiconfiguration Dirac–Hartree–Fock package
was used recently in [14] to study the hyperfine interaction-
dependent 4s4p 3P2 lifetimes in Zn-like ions. A number
of publications have been devoted to the investigation of
hyperfine interactions in these ions [15–18] within the past
10 years. Hyperfine quenching of the 4s4p 3P0 level in Zn-like
ions was investigated by Marques et al in [17]. The graspVU
multiconfiguration Dirac–Hartree–Fock package was used in
[16] to calculate transition rates between the 4s4f 3F2,3 and
4s4d 3D2 hyperfine levels in Ga II. It was pointed out in [16]
that the hyperfine interaction redistributes the intensity among
the hyperfine transitions. The authors underlined that those
results have never been reported before and this could be of
interest in the ongoing studies of the Ga abundance analysis
of peculiar HgMn stars [16].

Oscillator strengths [19–49] and lifetimes [50–68] in Zn-
like sequences have been studied in a number of works.
Atomic spectra in Zn-like ions were studied in different
scientific centres during the last 30 years [69–83]. However,
very few papers contain any values for polarizabilities of Zn-
like ions [84–89]. Recently, determination of polarizabilities
and lifetimes for the Mg, Zn, Cd and Hg isoelectronic
sequences was presented by Reshetnikov et al in [89]. It
was underlined in that work that the measurement of the the
lowest resonance transition lifetime can be used to determine
the polarizabilities and, alternatively, measurements of the
polarizabilities can be used to deduce lifetimes. Additionally,
isoelectronic regularities in line strengths can be used to obtain
a comprehensive database from a small number of precision
lifetime determinations. These methods were applied in [89]
to produce values for polarizabilities and lifetimes for the Mg,
Zn, Cd and Hg isoelectronic sequences.

In the present paper, an RMBPT method is used to
calculate transition rates and oscillator strengths between
the 4s2, 4p2, 4d2, 4f2, 4s4d and 4p4f even-parity states and
the 4s4p, 4s4f, 4p4d and 4d4f odd-parity states of the zinc
isoelectronic sequence for a broad range of the nuclear
charge, Z = 32–100. RMBPT calculations are based on
the Dirac–Fock basis set, and our first-order RMBPT gives
results equal to results obtained by MCDF codes. The
second-order RMBPT gives us results beyond the MCDF
approach. This method was used previously to evaluate
oscillator strength and transition rates in Be-, Mg-, Ca- and Yb-
like ions in [90–93]. Additionally, we calculate ground state
scalar α0(4s2 1S0) polarizabilities for Zn-like ions (Z = 33–
100). These calculations involve new calculations of RMBPT
energies for the odd-parity 4l5l′ complex with J = 1 and line
strengths between the even-parity 4l4l′ complex with J = 0
and the odd-parity 4l5l′, 4l6l′ complexes with J = 1.

In summary, this work presents both a systematic
calculation of the transition probabilities between excited
states in Zn-like ions and a study of the importance of the
correlation corrections to those properties. The final results
are used to calculate oscillator strengths, transition rates and
polarizabilities to provide benchmark values for Zn-like ions.
Our data are compared with the existing measurements.

2. Method

The first-order reduced dipole matrix element Z(1) for the
transition between two states vw(J )–v′w′(J ′) [90] is given by

Z(1)[v1w1(J ) − v2w2(J
′)]

=
√

[J ][J ′]
∑
vw

∑
v′w′

SJ (v1w1, vw)SJ ′
(v2w2, v

′w′)

× (−1)1+jw+jv′
{

J J ′ 1
jv′ jw jv

}
Zv′wδvw′ , (1)

where [J ] = 2J +1. The quantitySJ (v1w1, vw) is a symmetry
coefficient defined by

SJ (v1w1, vw) = ηv1w1

[
δv1vδw1w + (−1)jv+jw+J+1δv1wδw1v

]
,

(2)
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Figure 1. Second-order diagrams for electric-dipole matrix elements.

Table 1. Contributions to E1 uncoupled reduced matrix elements (au) in length L and velocity V forms for transitions between excited states
vw(J ) and v′w′(J ′) in Ag17+.

Coulomb interaction Coulomb–Breit interaction with factor 102

vw(J ) v′w′(J ′) Z(1) P (derv) Z(RPA) Z(corr) B(HF) B(RPA) B(corr) B(2)

4s1/24s1/2(0) 4s1/24p1/2(1) (L) 0.652 10 0.652 11 −0.032 63 0.009 89 0.050 32 −0.000 79 0.000 26 0.049 78
(V ) 0.650 93 0.000 03 −0.028 80 0.004 05 0.229 87 −0.001 06 −0.00752 0.22130

4s1/24s1/2(0) 4s1/24p3/2(1) (L) −0.928 83 −0.928 78 0.045 84 −0.014 07 −0.059 41 0.001 24 −0.000 56 −0.058 72
(V ) −0.922 02 0.000 08 0.035 75 −0.000 79 −0.058 00 −0.004 58 0.003 05 −0.059 53

4s1/24s1/2(0) 4p1/24d3/2(1) (L) 0.0 0.0 0.0 0.004 59 0.0 0.0 0.000 71 0.000 71
(V ) 0.0 0.0 0.0 0.001 45 0.0 0.0 0.000 05 0.000 05

4s1/24s1/2(0) 4p3/24d3/2(1) (L) 0.0 0.0 0.0 −0.002 03 0.0 0.0 −0.000 22 −0.000 22
(V ) 0.0 0.0 0.0 −0.000 50 0.0 0.0 0.001 03 0.001 03

4s1/24s1/2(0) 4p3/24d5/2(1) (L) 0.0 0.0 0.0 −0.006 50 0.0 0.0 −0.000 97 −0.000 97
(V ) 0.0 0.0 0.0 −0.001 73 0.0 0.0 −0.000 08 −0.000 08

4s1/24s1/2(0) 4d3/24f5/2(1) (L) 0.0 0.0 0.0 −0.000 13 0.0 0.0 0.000 39 0.000 39
(V ) 0.0 0.0 0.0 0.001 41 0.0 0.0 0.001 01 0.001 01

4s1/24s1/2(0) 4d5/24f5/2(1) (L) 0.0 0.0 0.0 −0.000 07 0.0 0.0 0.000 01 0.000 01
(V ) 0.0 0.0 0.0 0.000 31 0.0 0.0 0.000 50 0.000 50

4s1/24s1/2(0) 4d5/24f7/2(1) (L) 0.0 0.0 0.0 −0.000 29 0.0 0.0 0.000 11 0.000 11
(V ) 0.0 0.0 0.0 0.001 63 0.0 0.0 0.000 84 0.000 84

where ηvw is a normalization factor given by

ηvw =
{

1 for w �= v

1/
√

2 for w = v.

The second-order reduced matrix element Z(2) for the
transition between two states vw(J )–v′w′(J ′) consists of four
contributions: Dirac–Hartree–Fock Z(HF) term, random-phase
approximation Z(RPA) term, correlation contribution Z(corr)

term and derivative P (derv) term [90]. The Z(HF), Z(RPA), Z(corr)

and P (derv) contributions to second-order matrix elements
in terms of Brueckner–Goldstone diagrams are illustrated
in figure 1. The dashed lines indicate Coulomb + Breit
interactions and the wavy lines indicate the interaction with
the dipole field. Diagrams ‘HF 1’ and ‘HF 2’ as well as
diagrams ‘RPA 1’ and ‘RPA 2’ represent direct and exchange
contributions. These diagrams account for the shielding of
the dipole field by the core electrons. Diagrams ‘corr 1’
and ‘corr 2’ are direct and exchange correlation contributions.
These diagrams correct the matrix element to account for the
interaction between the valence electrons. The ‘derv’ diagram
represents symbolically the second-order RMBPT correction
from the derivative term [90]. A detailed discussion of these
diagrams for divalent systems was given by Safronova et al
[90].

All of the second-order correlation corrections that we
discussed above result from the residual Coulomb interaction.
To include correlation corrections due to the Breit interaction,

the Coulomb matrix element Xk(abcd) (see for detail [94])
must be modified according to the rule

Xk(abcd) → Xk(abcd) + Mk(abcd) + Nk(abcd), (3)

where Mk and Nk are magnetic radial integrals defined by
equations (A4) and (A5) in [95].

2.1. Uncoupled matrix elements

In table 1, we list values of the first- and second-order
contributions to electric-dipole matrix elements Z(1), Z(RPA),

Z(corr), and the matrix element of the derivative term P (derv) for
the 4s1/24s1/2(0)–4lj 4l

′
j ′(1) transitions in Zn-like silver, Z =

47. Both length and velocity forms of the matrix elements are
given. The Coulomb second-order contribution Z(HF) vanishes
in the present calculation since we use DF basis functions.
We use symbol B in table 1 to denote the Coulomb–Breit
contributions to the second-order matrix elements, and we
tabulate 100×B(HF), 100×B(RPA), 100×B(corr) and the totals
100 × B(2). We multiply Coulomb–Breit values by 100 for
more transparent comparison with Coulomb data. The ratios
of the second-order Z(RPA) and the lowest Z(1) contribution
are about 5% for the 4s1/24s1/2(0)–4s1/24pj (1) transitions.
However, the other second-order Z(corr) term decreases the
ratios of the second and first orders to 3%. The total second-
order Breit corrections B(2) also decrease the value of the
second-order contribution; however, the ratios of the B(2) and
Z(1) terms are very small (about 0.1%).
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Figure 2. Second-order contributions for electric-dipole matrix elements in Zn-like ions as functions of Z.

The ratios between these terms change with a nuclear
charge as illustrated by figure 2 where second-order
contributions Z(RPA), Z(corr) and B(2) are shown as functions
of Z for the 4s1/24s1/2(0)–4s1/24p1/2(1) and 4s1/24s1/2(0)–
4s1/24p3/2(1) electric-dipole matrix elements. The values of
the Z(corr) and Z(RPA) terms have different signs and almost
cancel each other for low-Z ions. The ratio of these terms
decreases very rapidly with Z and becomes 50% for Z = 37
and 2% for Z = 74. The ratio of the B(2) and Z(RPA) terms
slowly increases with Z from 1% for Z = 37 and 3% for
Z = 74.

It should be noted that only the Z(corr) terms are non-
zero for two-particle transitions such as the 4s1/24s1/2(0)–
4pj 4dj ′(1) and 4s1/24s1/2(0)–4dj 4fj ′(1) ones (see table 1).
The values of Z(corr) terms for two-particle transitions are
of the same order of magnitude as for the one-particle
transitions (for example, the 4s1/24s1/2(0)–4s1/24p1/2(1) and
4s1/24s1/2(0)–4p3/24d5/2(1) transitions).

2.2. Coupled matrix elements

As mentioned above, physical two-particle states are the
linear combinations of uncoupled two-particle states. For
the Ag17+ example discussed above, the transition amplitudes
between physical states are the linear combinations of the
uncoupled transition matrix elements given in table 1. The
mixing coefficients and energies are obtained by diagonalizing
the first-order effective Hamiltonian which includes both
Coulomb and Breit interactions. We let Cλ

1 (av) designate the
λth eigenvector of the first-order effective Hamiltonian and let
Eλ

1 be the corresponding eigenvalue. The coupled transition
matrix element between the initial eigenstate I with the angular
momentum J and the final state F with the angular momentum
J ′ is given by

Q(1+2)(I − F)

= 1

EI
1 − EF

1

∑
vw

∑
v′w′

CI
1 (vw)CF

1 (v′w′)
{
[εvw − εv′w′]

× [Z(1+2)[vw(J ) − v′w′(J ′)] + B(2)[vw(J ) − v′w′(J ′)]]
+

[
EI

1 − EF
1 − εvw + εv′w′

]
P (derv)[vw(J ) − v′w′(J ′)]

}
.

(4)

Here, εvw = εv + εw, Z(1+2) = Z(1) + Z(RPA) + Z(corr) and
B(2) = B(HF) + B(RPA) + B(corr). Using these formulae
together with the uncoupled reduced matrix elements given in
table 1, we transform the uncoupled matrix elements to matrix
elements between coupled (physical) states.

Values of coupled reduced matrix elements in length and
velocity forms are given in table 2 for the transitions considered
in table 1. Although we use an intermediate-coupling scheme,
it is nevertheless convenient to label the physical states using
the LS scheme. Both designations are given in table 2. We see
that L and V forms of the coupled matrix elements in table 2
differ by only 0.2–0.6%. These L–V differences arise because
we start our RMBPT calculations using a non-local Dirac–
Fock (DF) potential. If we were to replace the DF potential by
a local potential, the differences would disappear completely.
The first two columns in table 2 show L and V values of coupled
reduced matrix elements calculated without the second-order
contribution. As we see from this table, removing the second-
order contribution increases the L−V differences up to 1–9%.

We used second-order RMBPT code to calculate
uncoupled and coupled reduced matrix elements for Zn-like
ions given in tables 1 and 2. Unfortunately, the implementation
of the third-order RMBPT for heavier systems leads to many
problems connected with the intruder states. Therefore, we
studied the convergence of the RMBPT approach on the
example of Cu-like ions using the RMBPT code developed
by Johnson and Savukov [96]. In table 3, we illustrate
our results for reduced matrix elements of Cu-like ions with
nuclear charge Z = 36–100. The first three columns list
values obtained in first-, second- and third-order RMBPT for
the 4s–4pj transitions in Cu-like ions. The fourth and fifth
columns show ratios (in %) of the second- and first-order
results and the third- and first-order results, respectively. We
find that the third-order contribution is less than the second-
order contribution by a factor of 5–10. The third-order
contributes less than 1% for all of these ions confirming good
convergence of RMBPT for Cu-like ions. We find that the
ratios of second and first-order results (Z(2)/Z(1)) for the Zn-
like ions are similar to the ratios shown in the table for Cu-like
ions. Therefore, we expect that our conclusion regarding the
convergence of MBPT holds for Zn-like ions as well.
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Table 2. Coupled reduced matrix elements Q calculated in length L and velocity V forms for Ag17+.

First order RMBPT

l1l2LSJ l3l4L
′S ′J ′ L V L V j1j2 (J ) j3j4 (J ′)

4s2 1S0 4s4p 3P1 0.226 30 0.227 72 0.217 75 0.218 76 4s1/24s1/2(0) 4s1/24p1/2(1)

4s2 1S0 4s4p 1P1 1.030 71 1.024 55 0.992 77 0.996 36 4s1/24s1/2(0) 4s1/24p3/2(1)

4s2 1S0 4p4d 3D1 0.007 59 0.007 66 0.005 26 0.005 28 4s1/24s1/2(0) 4p1/24d3/2(1)

4p2 3P0 4p4d 1P1 0.071 18 0.070 56 0.069 78 0.069 98 4p1/24p1/2(0) 4p3/24d5/2(1)

4p2 1S0 4s4p 3P1 0.093 44 0.091 78 0.087 48 0.087 86 4p3/24p3/2(0) 4s1/24p1/2(1)

4p2 1S0 4s4p 1P1 0.660 94 0.655 63 0.648 67 0.650 74 4p3/24p3/2(0) 4s1/24p3/2(1)

4p2 1S0 4p4d 3D1 0.062 61 0.063 55 0.060 36 0.060 64 4p3/24p3/2(0) 4p1/24d3/2(1)

4p2 1S0 4p4d 3P1 0.031 02 0.031 39 0.029 84 0.029 94 4p3/24p3/2(0) 4p3/24d3/2(1)

4d2 3P0 4s4p 1P1 0.004 60 0.004 57 0.008 38 0.008 35 4d3/24d3/2(0) 4s1/24p3/2(1)

4d2 3P0 4p4d 1P1 0.092 25 0.093 14 0.090 19 0.090 54 4d3/24d3/2(0) 4p3/24d5/2(1)

4d2 3P0 4d4f 3D1 0.886 78 0.907 34 0.877 14 0.882 09 4d3/24d3/2(0) 4d3/24f5/2(1)

4d2 3P0 4d4f 3P1 0.066 50 0.068 30 0.064 66 0.065 10 4d3/24d3/2(0) 4d5/24f5/2(1)

4d2 3P0 4d4f 1P1 0.062 82 0.063 79 0.063 85 0.064 11 4d3/24d3/2(0) 4d5/24f7/2(1)

4d2 1S0 4s4p 3P1 0.003 94 0.003 89 0.004 30 0.004 31 4d5/24d5/2(0) 4s1/24p1/2(1)

4d2 1S0 4s4p 1P1 0.015 05 0.016 41 0.017 85 0.017 83 4d5/24d5/2(0) 4s1/24p3/2(1)

4d2 1S0 4p4d 3D1 0.118 35 0.117 22 0.117 16 0.117 60 4d5/24d5/2(0) 4p1/24d3/2(1)

4d2 1S0 4d4f 3D1 0.064 91 0.066 82 0.063 47 0.063 89 4d5/24d5/2(0) 4d3/24f5/2(1)

4d2 1S0 4d4f 3P1 0.005 95 0.006 06 0.005 62 0.005 62 4d5/24d5/2(0) 4d5/24f5/2(1)

4d2 1S0 4d4f 1P1 0.893 07 0.912 97 0.893 27 0.898 05 4d5/24d5/2(0) 4d5/24f7/2(1)

4f2 3P0 4d4f 3D1 0.780 75 0.799 60 0.753 19 0.757 41 4f5/24f5/2(0) 4d3/24f5/2(1)

4f2 3P0 4d4f 3P1 0.192 83 0.197 49 0.191 32 0.192 32 4f5/24f5/2(0) 4d5/24f5/2(1)

4f2 3P0 4d4f 1P1 0.062 22 0.064 01 0.059 91 0.060 27 4f5/24f5/2(0) 4d5/24f7/2(1)

4f2 1S0 4d4f 3D1 0.068 62 0.069 98 0.067 00 0.067 30 4f7/24f7/2(0) 4d3/24f5/2(1)

4f2 1S0 4d4f 1P1 0.850 32 0.870 77 0.816 58 0.820 54 4f7/24f7/2(0) 4d5/24f7/2(1)

Table 3. Correlation correction contributions to the 4s–4p E1 matrix elements of Cu-like ions.

Z(1) Z(1) + Z(2) Z(1) + Z(2) + Z(3) Z(2)/Z(1) Z(3)/Z(1)

Z (au) (au) (au) (%) (%)

4s–4p1/2 transitions
36 1.1351 1.0614 1.0512 −6.493 −0.898
40 0.8898 0.8391 0.8341 −5.700 −0.563
50 0.5856 0.5592 0.5577 −4.501 −0.264
60 0.4359 0.4195 0.4188 −3.772 −0.158
70 0.3448 0.3335 0.3332 −3.276 −0.107
80 0.2827 0.2744 0.2742 −2.923 −0.079

100 0.2013 0.1963 0.1962 −2.501 −0.050

4s–4p3/2 transitions
36 1.6099 1.5063 1.4922 −6.435 −0.878
40 1.2639 1.1926 1.1857 −5.642 −0.546
50 0.8352 0.7982 0.7961 −4.435 −0.250
60 0.6250 0.6019 0.6010 −3.695 −0.146
70 0.4973 0.4815 0.4810 −3.186 −0.096
80 0.4102 0.3987 0.3984 −2.817 −0.068

100 0.2952 0.2883 0.2882 −2.348 −0.041

2.3. Negative-energy contributions

It should be emphasized that we include negative energy state
(NES) contributions into the sums over the intermediate states.
Ignoring the NES contributions leads only to small changes
in the L-form matrix elements but to substantial changes in
some of the V-form matrix elements, with a consequent loss
of gauge independence for a local potential.

The NES contributions to the second-order reduced matrix
elements arise from the terms in the sums over states i and
n in the Z(corr) contributions [90] for which single-particle
energy εi < −mc2. The NES contributions for relativistically
allowed transitions were discussed in [90, 91, 97] for Be-

like and Mg-like ions, where they were found to be the most
important for velocity-form matrix elements; they do not
significantly modify length-form matrix elements. In [90],
it was shown that NES contributions can be of the same order
of magnitude as the ‘regular’ positive-energy contributions
for certain non-relativistically forbidden transitions in Be-like
ions. We observe similar large contributions for LS-forbidden
transitions here. The matrix elements in tables 1 and 2 include
NES contributions.

In figure 3, we illustrate the Z-dependence of the
differences between line strengths calculated in length SL

and velocity SV forms for the 4s2 1S0–4s4p 1P1 and 4s2 1S0–
4s4p 3P1 transitions. We plot the ratio (SL–SV )/SL (in %)
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Figure 3. Difference between the values of line strengths calculated in length (SL) and velocity (SV ) gauges for E1 transitions in Zn-like
ions as functions of Z. Graph (a) shows data without NES contributions and graph (b) shows data with NES contributions.

calculated without (a) and with (b) negative-energy state
contributions to the second-order reduced matrix elements.
The ratio (SL − SV )/SL for the 4s2 1S0–4s4p 1P1 transition
decreases from 1.2% for Z = 40 to 0.17% for Z = 70,
respectively. The ratio (SL − SV )/SL for the 4s2 1S0–4s4p 3P1

transitions decreases from 4.7% for Z = 40 to 2.1% for
Z = 70. However, this ratio decreases substantially (from
1.5% for Z = 40 to 0.37% for Z = 70) when NES are
included for the 4s2 1S0–4s4p 3P1 transition. No large changes
with including NES are observed in the (SL − SV )/SL ratio
for the 4s2 1S0–4s4p 1P1 transition (see the right panel of
figure 3).

In view of the gauge dependence issue discussed above,
our results below are presented in the L form to decrease
the volume of tabulated material. Uncertainties in the
recommended values given in [98] were estimated to be less
than 10% based on comparisons with experimental results
from lifetime and emission measurements. The agreement
between theoretical L-form and V-form results was also used
in [98] as an indicator of accuracy. Since the present transition
data are obtained using a single method for all Z and improves
in accuracy with increasing Z, owing to the decrease of relative
importance of correlation correction, we expect our data for
high Z to be very reliable.

3. Results and discussion

We calculate line strengths, oscillator strengths and transition
probabilities for 851 [4l14l2

1,3LJ –4l34l4
1,3L′

J ′ ] lines for all
ions with Z = 32–100. The results were calculated in both
length and velocity forms, but only length-form results are
presented in the following tables and figures for reasons
discussed in the previous section. The theoretical energies
used to evaluate oscillator strengths and transition probabilities
are calculated using the second-order RMBPT formalism
developed in [10].

3.1. Transition rates

The general trends of the Z-dependence of transition rates for
the 4l14l2

1,3LJ –4l34l4
1,3L′

J ′ lines are presented in figures 4

and 5. In these figures, we show transitions to a fixed J
state from states belonging to a limited set of the 4l4l′ 1,3LJ

states, i.e. a complex of states. A complex includes
all states of the same parity and J obtained from the
combinations of the 4l4l′ 1,3LJ states. For example, the odd-
parity complex with J = 1 includes the states 4s4p 1,3P1,

4p4d 3D1, 4p4d 1,3P1, 4d4f 3D1 and 4d4f 1,3P1 in LS coupling
or 4s1/24p1/2(1), 4s1/24p3/2(1), 4p1/24d3/2(1), 4p3/24d3/2(1),

4p3/24d5/2(1), 4d3/24f5/2(1), 4d5/24f5/2(1) and 4d5/24f7/2(1)

in jj coupling. Later, we use the LS designations since they
are more conventional.

In the top two panels of figure 4, we present a limited
set (11 among 56 transitions included in the even-parity
complex with J = 0 and odd-parity complexes with J = 1) of
transition rates for the 4s2 1S0–4s4p 1,3P1, 4s2 1S0–4p4d 1,3P1,

4s2 1S0–4d4f 1P1, 4p2 1S0–4s4p 1,3P1, 4p2 1S0–4p4d 1,3P1 and
4p2 1S0–4d4f 1,3P1 transitions. It should be noted that only two
transitions shown in the left top panel of figure 4 (curves ‘1’
and ‘2’) are the 4s–4p electric-dipole one-particle transitions.
Other three transitions (curves ‘3’, ‘4’ and ‘5’) are forbidden
as electric-dipole one-particle transitions. The values of
transition rates for these transitions are non-zero because of
two-particle interaction between the [4s2 +4p2 +4d2 +4f2] and
[4s4p + 4p4d + 4d4f] configurations as well as because of the
second-order contribution from correlation diagrams Z(corr)

as demonstrated in table 1. As a result, the transition rates
of these two-particle 4s2 1S0–4p4d 1,3P1 and 4s2 1S0–4d4f 1P1

transitions presented in the left top panel of figure 4 are
smaller (by two to four orders of magnitude) than the transition
rates of one-particle 4s2 1S0–4s4p 1,3P1 lines for small Z but
become even larger for high Z. Similar ratios between the
allowed 4p2–4p4d electric-dipole one-particle transitions and
the forbidden 4p2–4d4f electric-dipole two-particle transitions
are demonstrated by the top right panel of figure 4.

In the bottom two panels of figure 4, we present a limited
set of transition rates for the 4s4d–4p4d, 4p2–4p4d, 4s4d–4s4f
and 4p2–4s4f transitions (12 among 250 transitions between
the states from the odd-parity complex with J = 2 and
even parity complexes with J = 1, 2, and 3). The
4s4d–4p4d and 4p2–4p4d transitions are illustrated by the
4s4d 1,3DJ –4p4d 1D2 and by 4p2 3PJ –4p4d 1D2 transitions
shown in the bottom left panel of figure 4. In the bottom right

6



J. Phys. B: At. Mol. Opt. Phys. 43 (2010) 074025 U I Safronova and M S Safronova

30 40 50 60 70 80 90 100 110

10
6

10
7

10
8

10
9

10
10

10
11

10
12

10
13

3

5

2

4

1

5=4s
2 1

S
0
 - 4d4f 

1
P

1

3=4s
2 1

S
0
 - 4p4d 

3
D

1

4=4s
2 1

S
0
 - 4p4d 

1
P

1

1=4s
2 1

S
0
 - 4s4p 

1
P

1

2=4s
2 1

S
0
 - 4s4p 

3
P

1

T
ra

n
si

tio
n

 r
a

te
s 

(s
-1
)

Nuclear charge Z
30 40 50 60 70 80 90 100 110

10
3

10
5

10
7

10
9

10
11

10
13

5

3

4

6

1

2

5

2

4
3

6

1

5=4p
2 3

P
0
 - 4d4f 

3
P

1

6=4p
2 3

P
0
 - 4d4f 

1
P

1

3=4p
2 3

P
0
 - 4p4d 

1
P

1

4=4p
2 3

P
0
 - 4d4f 

3
D

1

2=4p
2 3

P
0
 - 4p4d 

3
P

1

1=4p
2 3

P
0
 - 4p4d 

3
D

1

T
ra

n
si

tio
n

 r
a

te
s 

(s
-1
)

Nuclear charge Z

30 40 50 60 70 80 90 100 110

10
2

10
4

10
6

10
8

10
10

6

2

3

1

4

5

6

5

1

2

4

3

6=4s4d
3
D

3
 4p4d 

1
D

2

5=4p
2 3

P
2
 - 4p4d 

1
D

2

4=4s4d
3
D

2
 4p4d 

1
D

2

3=4s4d
1
D

2
 - 4p4d 

1
D

2

2=4p
2 3

P
1
 - 4p4d 

1
D

2

1=4s4d
3
D

1
 - 4p4d 

1
D

2

T
ra

n
si

tio
n

 r
a

te
s 

(s
-1
)

Nuclear charge Z

30 40 50 60 70 80 90 100 110

10
2

10
4

10
6

10
8

10
10

10
12

6

2

3

3

2

6

1

4

5

6=4s4d
3
D

3
 4s4f 

3
F

25=4p
2 3

P
2
 - 4s4f 

3
F

2

4=4s4d
3
D

2
 4s4f 

3
F

2
3=4s4d

1
D

2
 - 4s4f 

3
F

2

2=4p
2 3

P
1
 - 4s4f 

3
F

2

1=4s4d
3
D

1
 - 4s4f 

3
F

2

T
ra

n
si

tio
n

 r
a

te
s 

(s
-1
)

Nuclear charge Z

Figure 4. Transition rates for even–odd transitions in Zn-like ions as a function of Z.

panel of figure 4, we show Z dependence of transition rates for
the 4s4d 1,3DJ –4s4f 3F2 and the 4p2 3PJ –4s4f 3F2 transitions.

In the six panels of figure 5, we present all
possible 4s4p–4s4d and 4s4p–4p2 electric-dipole one-particle
transitions. The smallest values of transition rates are observed
in figure 5 for singlet–triplet transitions: curves ‘2’ and ‘3’ (top
left panel), curves ‘3’ and ‘4’ (top right panel), curves ‘2’ and
‘4’ (centre left panel), curves ‘1’ and ‘3’ (centre and bottom
right panels) and curve ‘3’ (bottom left panel). It should be
noted that in some cases this statement is not true for high-Z
ions (see, for example, curves ‘2, 4’ and ‘1, 3’ on the centre
left panel and curves ‘1’ and ‘2’ on the centre right panel of
figure 5).

We see from the graphs that transitions with smooth Z
dependences are rarer than transitions with sharp features
but they still occur for all transition types: triplet–triplet,
singlet–singlet and singlet–triplet, and include transitions with
both small J and large J. One general conclusion that can be
derived from those graphs is that the smooth Z-dependences
occur more frequently for transitions with the largest values of
transition rates among the transitions inside complexes.

Singularities in the transition-rate curves have three
distinct origins: avoided level crossings, zeros in the dipole
matrix elements and zeros in transition energies. Avoided level
crossings result in changes of the dominant level configuration
at a particular value of Z and lead to abrupt changes in
the transition rate curves when the rates associated with the
dominant configurations below and above the crossing point
are significantly different. Zeros in transition matrix elements

as functions of Z lead to cusp-like minima in the transition
rate curves. Zeros in transition energies occur at high Z when
levels of different parity cross.

Examples of each of these three singularity types are
illustrated by figures 4 and 5. Dramatic example of the first
type, avoided level crossings, is seen in the bottom right panel
of figure 4 at Z = 68, corresponding to a change in the dominant
configuration for the 4s4f 3F2 state, the 4p3/24d7/2(2) instead
of the 4s1/24f5/2(2) configuration. Examples of the second
type, zeros in matrix elements, are seen on the centre left panel
of figure 5 at Z = 61–62 for the 4s4p 3P1–4p2 3P2 transition.
Finally, singularity of the third type, corresponding to a very
small (near zero) transition energy is seen at Z = 73 in the
top-left panel of figure 5 for the 4s4p 1P1–4p2 3P0 transition.
In this case, the level inversion occur at the interface between
the upper even- and odd-parity groups at high Z. The upper
4p2 3P0 level becomes the lower 4p2 3P0 level; however, the
lower 4s4p 1P1 level becomes the upper level at Z = 73.

3.2. Wavelengths, transition rates and oscillator strengths

In tables 4 and 5, wavelengths and electric-dipole transition
rates for the 16 4s2–4s4p, 4s4p–4s4d, 4s4p–4p2 transitions
in Zn-like ions with Z = 70–92 are presented. The
RMBPT results are compared with experimental wavelengths
from [9]. To save space, we did not include theoretical
wavelengths and electric-dipole transition rates for the
4s2–4s4p, 4s4p–4s4d, 4s4p–4p2 transitions calculated in [9].
These values were obtained using the fully relativistic
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Figure 5. Transition rates for odd–even transitions in Zn-like ions as a function of Z.

multiconfiguration Dirac–Fock (MCDF) approach with the
latest version of GRASP (General-purpose Relativistic Atomic
Structure Package). The 4l4l′ model space was used for most
of the ions, and 4l5l′ model space was added for Yb XLI
and U LXIII [9]. This expansion of the model space resulted
in only small differences in the results. The wavelengths
were modified on average by only 0.012% and 0.009% while
the changes of transition probabilities ranged from 0.60% to
0.70% in these two ions, respectively. We made detailed
comparison with results from [9] and confirmed that our
first-order RMBPT transition rates are in excellent agreement
with transition rates from [9] (since similar model spaces
are used). The second-order RMBPT includes additional
correlation effects beyond the MCDF approach and is expected
to produce more accurate results.

We find excellent agreement of our RMBPT values of
wavelengths with experimental results taking into account

experimental uncertainties. It should be noted that
experimental values presented in [9] were taken from
laboratories using different facilities, resulting in different
uncertainties shown in experimental wavelengths listed in
tables 4 and 5. The values for the 4s1/24p1/2(1)–4p1/24p3/2(2)

and 4s1/24p3/2(2)–4p1/24p3/2(2) transitions in W44+ have
the smallest uncertainties (0.0062 Å and 0.0040 Å). These
measurements were done at the EBIT facility at the Lawrence
Livermore National Laboratory [99]. Electron-beam energies
of about 3 keV were sufficient to produce ions in all of
the charge states of present interest [99]. For most of the
wavelengths, the uncertainties were equal to 0.020 Å [79].
The spectra from laser-produced plasmas were recorded using
a 3 m grazing incidence spectrograph. Thick planar targets
were irradiated by one beam of the Nova laser at the Lawrence
Livermore National Laboratory [79]. The uncertainties of
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Table 4. Wavelengths (λ in Å) and transition rates (Ar in s−1) for the 4s2–4s4p and 4s4p–4s4d transitions in Zn-like ions, Z = 70–92. The
RMBPT results (RMBPT) are compared with experimental (expt) wavelength results presented in [9]. Subscripts a, b, c and d indicate
uncertainties of 0.020 Å, 0.005 Å, 0.050 Å and 0.100 Å, respectively.

RMBPT expt RMBPT RMBPT expt RMBPT RMBPT expt RMBPT RMBPT expt RMBPT
Z λ (Å) λ (Å) Ar (s−1) λ (Å) λ (Å) Ar (s−1) λ (Å) λ (Å) Ar (s−1) λ (Å) λ (Å) Ar (s−1)

4s1/24s1/2(0)–4s1/24p3/2(1) 4s1/24s1/2(0)–4s1/24p1/2(1) 4s1/24p1/2(1)–4s1/24d5/2(2) 4s1/24p1/2(0)–4s1/24d3/2(1)

70 73.790 73.792a 4.27[11] 147.949 148.170d 1.30[10] 57.561 57.540a 6.65[11] 73.457 73.461a 1.92[11]
71 70.320 70.317a 4.72[11] 143.939 1.38[10] 55.166 55.159a 7.27[11] 69.982 69.979a 2.14[11]
72 67.067 67.015a 5.20[11] 140.303 140.048b 1.46[10] 52.884 52.878a 7.95[11] 66.728 66.672a 2.37[11]
73 63.887 63.869a 5.77[11] 136.438 1.56[10] 50.704 50.677a 8.70[11] 63.549 63.552a 2.64[11]
74 60.906 60.900a 6.38[11] 132.928 1.66[10] 48.621 48.604a 9.53[11] 60.572 60.581a 2.93[11]
75 58.069 58.071a 7.06[11] 129.552 1.75[10] 46.629 46.598a 1.04[12] 57.741 57.742a 3.26[11]
76 55.371 55.384c 7.82[11] 126.314 1.85[10] 44.722 1.14[12] 55.050 3.63[11]
77 52.804 8.66[11] 123.205 1.95[10] 42.896 1.26[12] 52.491 4.04[11]
78 50.360 9.60[11] 120.212 2.06[10] 41.147 1.38[12] 50.056 4.49[11]
79 48.033 48.063a 1.06[12] 117.333 2.16[10] 39.470 39.453a 1.51[12] 47.740 47.728a 5.00[11]
80 45.819 1.18[12] 114.563 2.27[10] 37.863 1.66[12] 45.536 5.56[11]
81 43.710 1.31[12] 111.887 2.38[10] 36.322 1.83[12] 43.437 6.19[11]
82 41.701 41.689a 1.45[12] 109.309 2.50[10] 34.844 34.819a 2.01[12] 41.440 6.88[11]
83 39.789 39.792a 1.61[12] 106.823 2.61[10] 33.426 33.413a 2.21[12] 39.538 39.511a 7.66[11]
84 37.966 1.79[12] 104.417 2.73[10] 32.065 2.43[12] 37.726 8.53[11]
85 36.230 1.99[12] 102.100 2.85[10] 30.760 2.68[12] 36.002 9.49[11]
86 34.577 2.21[12] 99.866 2.98[10] 29.507 2.95[12] 34.359 1.06[12]
87 33.001 2.45[12] 97.694 3.10[10] 28.304 3.25[12] 32.793 1.18[12]
88 31.498 2.72[12] 95.596 3.23[10] 27.149 3.59[12] 31.301 1.31[12]
89 30.066 3.03[12] 93.561 3.36[10] 26.040 3.95[12] 29.878 1.46[12]
90 28.702 28.702a 3.36[12] 91.602 3.49[10] 24.976 24.980b 4.36[12] 28.523 1.62[12]
91 27.399 3.74[12] 89.690 3.63[10] 23.953 4.82[12] 27.229 1.81[12]
92 26.159 26.157a 4.16[12] 87.860 3.76[10] 22.972 22.953a 5.32[12] 25.998 26.000a 2.01[12]

4s1/24p1/2(1)–4s1/24d3/2(2) 4s1/24p1/2(1)–4s1/24d3/2(1) 4s1/24p3/2(2)–4s1/24d5/2(3) 4s1/24p3/2(2)–4s1/24d5/2(2)
70 75.570 75.423a 1.51[11] 76.199 1.03[11] 77.460 77.355a 2.93[11] 84.387 84.170a 8.08[09]
71 71.966 71.804a 1.69[11] 72.551 1.13[11] 75.245 75.140a 3.06[11] 82.321 82.177a 1.10[10]
72 68.590 1.89[11] 69.136 1.25[11] 73.117 73.022a 3.21[11] 80.362 80.226a 1.35[10]
73 65.294 65.143a 2.12[11] 65.799 1.39[11] 71.072 70.967a 3.36[11] 78.491 78.319a 1.57[10]
74 62.207 62.106a 2.37[11] 62.676 1.54[11] 69.104 68.995a 3.52[11] 76.706 76.516a 1.75[10]
75 59.272 2.66[11] 59.707 1.71[11] 67.208 3.68[11] 74.999 1.92[10]
76 56.483 2.97[11] 56.886 1.90[11] 65.380 3.86[11] 73.363 2.06[10]
77 53.831 3.32[11] 54.205 2.10[11] 63.617 4.04[11] 71.795 2.19[10]
78 51.309 3.72[11] 51.656 2.33[11] 61.915 4.23[11] 70.289 2.30[10]
79 48.911 48.735a 4.15[11] 49.232 2.59[11] 60.270 60.167a 4.43[11] 68.841 2.41[10]
80 46.631 4.64[11] 46.928 2.88[11] 58.680 4.63[11] 67.448 2.50[10]
81 44.460 5.19[11] 44.735 3.20[11] 57.141 4.85[11] 66.107 2.59[10]
82 42.394 42.206a 5.79[11] 42.649 3.55[11] 55.652 55.558a 5.08[11] 64.814 2.67[10]
83 40.429 40.232a 6.46[11] 40.664 3.95[11] 54.209 54.063a 5.32[11] 63.567 2.75[10]
84 38.557 7.21[11] 38.775 4.39[11] 52.812 5.57[11] 62.364 2.82[10]
85 36.777 8.05[11] 36.978 4.88[11] 51.457 5.83[11] 61.203 2.89[10]
86 35.082 8.97[11] 35.268 5.43[11] 50.143 6.11[11] 60.080 2.95[10]
87 33.467 1.00[12] 33.639 6.03[11] 48.868 6.40[11] 58.995 3.01[10]
88 31.929 1.12[12] 32.087 6.71[11] 47.630 6.71[11] 57.944 3.06[10]
89 30.464 1.24[12] 30.610 7.47[11] 46.428 7.03[11] 56.928 3.12[10]
90 29.069 1.38[12] 29.203 8.31[11] 45.260 7.37[11] 55.943 3.17[10]
91 27.738 1.54[12] 27.862 9.24[11] 44.126 7.72[11] 54.989 3.21[10]
92 26.472 26.254a 1.72[12] 26.587 1.03[12] 43.023 8.10[11] 54.064 3.26[10]

0.020 Å are equal to measurement accuracies ranging from
0.03% for the Yb40+ ion up to 0.08% for the U62+ ion.

Wavelengths (λ in Å) and oscillator strengths for the
4s2 1S0–4s4p 1,3P1 transitions in Zn-like ions with Z = 47–
69 are listed in table 6. Results for oscillator strengths are
evaluated in first-order and second-order RMBPT. In two
last columns of table 6, we show other theoretical values.
The multiconfiguration Dirac–Fock (MCDF) technique (Grant
code) was used by Biémont [36] to evaluate values presented in
column ‘MCDF’. The multiconfiguration relativistic random-

phase approximation (MCRRPA) approach developed by
Huang and Johnson [32, 100, 101] was implemented to
evaluate values presented in the column ‘f [32]’ of table 6.
Some years later the same MCRRPA code was extended
to calculate oscillator strengths for the 4s2 1S0–4s4p 1,3P1

transitions in Zn-like ions for high-Z ions up to Z = 92 [39].
However, we can find only one additional result for Tb35+ to
include in table 6 from [39]. There are no other differences in
results given in columns ‘f [32]’ and ‘f [39]’ of table 6.
In the last column of table 6, we list oscillator strengths
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Table 5. Wavelengths (λ in Å) and transition rates (Ar in s−1) for 4s4p–4p2 transitions in Zn-like ions, Z = 70–92. The RMBPT results
(RMBPT) are compared with experimental (expt) wavelength results presented in [9]. Subscripts a, b and c indicate uncertainties of
0.020 Å, 0.0062 Å and 0.0040 Å, respectively.

RMBPT expt RMBPT RMBPT expt RMBPT RMBPT expt RMBPT RMBPT expt RMBPT
Z λ (Å) λ (Å) Ar (s−1) λ (Å) λ (Å) Ar (s−1) λ (Å) λ (Å) Ar (s−1) λ (Å) λ (Å) Ar (s−1)

4s1/24p1/2(1)–4p1/24p3/2(2) 4s1/24p1/2(0)–4p1/24p3/2(1) 4s1/24p1/2(1)–4p1/24p3/2(1) 4s1/24p3/2(1)–4p3/24p3/2(0)
70 53.944 8.90[09] 56.635 56.617a 4.02[11] 58.251 2.18[11] 75.565 75.666a 5.44[11]
71 51.326 1.84[10] 54.322 54.317a 4.37[11] 55.857 55.945a 2.36[11] 71.935 71.651a 6.05[11]
72 48.906 2.91[10] 52.110 52.096a 4.76[11] 53.567 2.55[11] 68.539 68.249a 6.72[11]
73 46.642 3.99[10] 49.993 49.950a 5.18[11] 51.375 2.76[11] 65.226 64.957a 7.49[11]
74 44.533 44.5299b 5.04[10] 47.966 47.900a 5.63[11] 49.275 49.369a 2.99[11] 62.126 61.860a 8.33[11]
75 42.552 6.02[10] 46.023 6.14[11] 47.264 3.24[11] 59.182 9.27[11]
76 40.683 6.95[10] 44.162 6.69[11] 45.336 3.52[11] 56.386 1.03[12]
77 38.914 7.82[10] 42.378 7.29[11] 43.489 3.82[11] 53.729 1.15[12]
78 37.234 8.66[10] 40.667 7.95[11] 41.717 4.15[11] 51.205 1.28[12]
79 35.636 9.48[10] 39.026 39.000a 8.68[11] 40.018 40.098a 4.51[11] 48.805 48.485a 1.42[12]
80 34.114 1.03[11] 37.451 9.47[11] 38.388 4.91[11] 46.524 1.59[12]
81 32.662 1.11[11] 35.940 1.04[12] 36.824 5.34[11] 44.354 1.76[12]
82 31.275 1.19[11] 34.490 1.13[12] 35.323 35.366a 5.82[11] 42.290 1.97[12]
83 29.950 1.28[11] 33.097 33.081a 1.24[12] 33.883 33.919a 6.34[11] 40.327 40.008a 2.19[12]
84 28.684 1.36[11] 31.760 1.35[12] 32.500 6.92[11] 38.458 2.44[12]
85 27.473 1.45[11] 30.477 1.48[12] 31.174 7.55[11] 36.681 2.71[12]
86 26.314 1.55[11] 29.244 1.62[12] 29.900 8.25[11] 34.989 3.02[12]
87 25.205 1.64[11] 28.060 1.78[12] 28.677 9.02[11] 33.377 3.37[12]
88 24.144 1.75[11] 26.923 1.95[12] 27.503 9.87[11] 31.843 3.75[12]
89 23.128 1.85[11] 25.831 2.14[12] 26.376 1.08[12] 30.381 4.18[12]
90 22.155 1.96[11] 24.781 2.34[12] 25.293 25.313a 1.18[12] 28.989 4.66[12]
91 21.223 2.08[11] 23.773 2.57[12] 24.254 1.30[12] 27.662 5.19[12]
92 20.331 2.21[11] 22.805 22.774a 2.82[12] 23.256 23.233a 1.42[12] 26.400 5.78[12]

4s1/24p3/2(1)–4p3/24p3/2(2) 4s1/24p3/2(2)–4p1/24p3/2(2) 4s1/24p3/2(1)–4p1/24p3/2(2) 4s1/24p1/2(1)–4p1/24p1/2(0)
70 75.717 75.320a 6.11[11] 76.834 2.41[11] 85.144 85.385a 6.62[09] 132.193 9.91[10]
71 72.690 72.661a 6.46[11] 74.053 2.31[11] 81.899 82.035a 1.95[10] 128.810 1.03[11]
72 69.701 69.634a 6.76[11] 71.522 2.18[11] 78.962 3.99[10] 125.720 1.07[11]
73 66.669 66.647a 7.06[11] 69.167 2.03[11] 76.240 76.377a 6.64[10] 122.442 1.11[11]
74 63.725 63.706a 7.37[11] 67.003 66.9301c 1.89[11] 73.750 73.840a 9.66[10] 119.448 1.16[11]
75 60.854 7.72[11] 64.985 1.76[11] 71.435 1.29[11] 116.559 1.20[11]
76 58.074 8.12[11] 63.089 1.65[11] 69.267 1.61[11] 113.781 1.24[11]
77 55.396 8.59[11] 61.297 1.57[11] 67.221 1.93[11] 111.106 1.29[11]
78 52.825 9.14[11] 59.592 1.50[11] 65.281 2.24[11] 108.524 1.33[11]
79 50.363 50.406a 9.79[11] 57.964 1.45[11] 63.431 63.346a 2.55[11] 106.035 1.38[11]
80 48.010 1.05[12] 56.405 1.42[11] 61.662 2.85[11] 103.634 1.42[11]
81 45.763 1.14[12] 54.907 1.39[11] 59.965 3.14[11] 101.310 1.47[11]
82 43.620 43.640a 1.23[12] 53.465 1.38[11] 58.334 3.44[11] 99.067 1.52[11]
83 41.578 41.590a 1.34[12] 52.075 1.37[11] 56.763 56.677a 3.73[11] 96.898 1.57[11]
84 39.631 1.47[12] 50.733 1.37[11] 55.248 4.03[11] 94.796 1.62[11]
85 37.778 1.61[12] 49.435 1.38[11] 53.785 4.33[11] 92.767 1.67[11]
86 36.015 1.76[12] 48.180 1.40[11] 52.370 4.63[11] 90.807 1.73[11]
87 34.334 1.93[12] 46.963 1.41[11] 51.001 4.95[11] 88.898 1.78[11]
88 32.734 2.13[12] 45.784 1.44[11] 49.675 5.27[11] 87.052 1.84[11]
89 31.210 2.35[12] 44.640 1.46[11] 48.390 5.60[11] 85.258 1.89[11]
90 29.761 2.59[12] 43.530 1.50[11] 47.143 5.95[11] 83.527 1.95[11]
91 28.379 2.86[12] 42.452 1.53[11] 45.934 6.30[11] 81.837 2.01[11]
92 27.066 3.16[12] 41.405 1.57[11] 44.760 6.67[11] 80.215 2.06[11]

evaluated by the MCRRPA approach that included additional
core excitation channels and use of experimental excitation
energies [40].

Comparison of oscillator strengths shown in six columns
of table 6 shows that the MCDF (‘f [36]’) results are in
good agreement with our first-order results. There is only a
small difference between our first-order results and MCRRPA
results given in columns ‘f [32]’ and ‘f [39]’. It should
be noted that the RMBPT results are smaller than first-

order results by 5–7%. Including core excitation channels

in the MCRRPA approach decreases oscillator strengths for

the 4s2 1S0–4s4p 1P1 transitions and brings those results closer

to our RMBPT values with only 2–3% remaining difference.

For the 4s2 1S0–4s4p 3P1 transition, the influence of including

core excitation channels in MCRRPA approach appears to be

very small. There is only 1% difference in all three MCRRPA

f values for the 4s2 1S0–4s4p 3P1 transition.
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Table 6. Wavelengths (λ in Å) and oscillator strengths for the 4s2 1S0–4s4p 1,3P1 transitions in Zn-like ions, evaluated in first and second
orders of RMBPT. The RMBPT values of oscillator strengths are compared with other theoretical results (MCDF method) [36] and
(MCRRPA method) [32, 39, 40]. Experimental (expt) wavelengths are from [36] : a, and [79] : b.

RMBPT expt RMBPT First order MCDF MCRRPA
Z Wavelengths (Å) f f f [36] f [32] f [39] f [40]

4s2 1S0–4s4p 1P1 transition
47 244.685 244.310a 1.224 1.338 1.349 1.374 1.373 1.2653
48 230.272 230.045a 1.206 1.315 1.325 1.348 1.348 1.2431
49 217.328 216.977a 1.187 1.293 1.302
50 205.089 204.811(40)b 1.173 1.272 1.281
51 193.841 193.604(40)b 1.156 1.252 1.270
52 183.455 183.175(40)b 1.140 1.234 1.247
53 173.646 173.478(40)b 1.127 1.217 1.225 1.243 1.242 1.1523
54 164.610 164.398(40)b 1.114 1.202 1.209 1.226 1.225 1.1372
55 156.053 155.939(5)b 1.104 1.187 1.195 1.210 1.210 1.1247
56 148.103 147.972(10)b 1.095 1.174 1.181 1.197 1.196 1.1131
57 140.491 140.531(20)b 1.082 1.162 1.169
58 133.443 133.452(20)b 1.070 1.152 1.159
59 126.871 126.841(10)b 1.058 1.142 1.149
60 120.644 120.597(5)b 1.054 1.134 1.141
61 114.724 114.680a 1.050 1.127 1.134
62 109.137 109.112(20)b 1.046 1.121 1.128
63 103.849 103.832(20)b 1.043 1.116 1.123
64 98.843 98.824(20)b 1.040 1.112 1.119
65 94.098 94.090a 1.039 1.109 1.117 1.127
66 89.599 89.606(20)b 1.039 1.108 1.115
67 85.333 85.311(20)b 1.039 1.107 1.114
68 81.283 81.303(5)b 1.040 1.107 1.114
69 77.442 77.460a 1.042 1.108 1.116

4s2 1S0–4s4p 3P1 transition
47 351.682 351.804a 0.0407 0.0436 0.0451 0.0466 0.0466 0.0487
48 333.211 333.513a 0.0458 0.0489 0.0505 0.0520 0.0520 0.0540
49 317.072 316.930a 0.0508 0.0543 0.0560
50 301.729 301.713(40)b 0.0562 0.0598 0.0615
51 287.844 287.819(40)b 0.0613 0.0654 0.0670
52 275.184 275.078(40)b 0.0665 0.0708 0.0724
53 263.362 263.335(40)b 0.0716 0.0763 0.0779 0.0796 0.0795 0.0799
54 252.625 252.473(40)b 0.0766 0.0815 0.0832 0.0848 0.0848 0.0856
55 242.399 242.390(5)b 0.0816 0.0867 0.0883 0.0899 0.0899 0.0897
56 233.042 0.0867 0.0916 0.0932 0.0948 0.0948 0.0943
57 224.316 224.300(100)b 0.0906 0.0963 0.0979
58 216.159 0.0943 0.1008 0.1023
59 208.455 0.0980 0.1051 0.1065
60 201.344 201.265(5)b 0.1015 0.1091 0.1104
61 194.561 0.1048 0.1128 0.1141
62 188.197 0.1083 0.1163 0.1175
63 182.186 182.200(200)b 0.1114 0.1195 0.1206
64 176.504 176.600(200)b 0.1142 0.1225 0.1235
65 171.119 0.1167 0.1252 0.1262 0.1274
66 166.007 165.953(5)b 0.1187 0.1276 0.1286
67 161.153 0.1212 0.1299 0.1307
68 156.534 156.487(5)b 0.1236 0.1319 0.1327
69 152.146 0.1257 0.1337 0.1344

Wavelengths for the 4s2 1S0–4s4p 1,3P1 transitions are
compared in two columns of table 6. Our RMBPT values
are compared with experimental (expt) wavelengths from [36]
and [79]. The uncertainties differ by a factor of 20 for some
ions. No uncertainties were given in [36]. The difference
between our RMBPT and experimental wavelengths is about
0.01–0.05% and below the uncertainties in experimental
measurements. We note that the difference between MCDF
[36] and experimental wavelengths is about 1%.

3.3. Ground state static polarizabilities in Zn-like ions

The electric-dipole static polarizability α0 of the level ‖aJ 〉 is
defined as [102]

α0(aJ ) = 2

3(2J + 1)

∑
n

|〈aJ‖D‖nJ ′〉|2
E(aJ ) − E(nJ ′)

. (5)

Here, 〈aJ‖D‖nJ ′〉 is the coupled electric-dipole matrix
element defined by equation (4) and E(aJ ) is the energy of the
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Table 7. Contributions to the electric-dipole polarizability of Zn-like krypton in the 4s2 1S0 ground state.

Level First order RMBPT

4l′nl 1,3L1 �E D I �E D I

4s4p 3P1 0.5266 0.1113 1.57[−2] 0.5483 0.1065 1.38[−2]
4s4p 1P1 0.7949 1.7810 2.66[−0] 0.7772 1.7129 2.52[−0]
4p4d 3D1 2.2644 0.0091 2.46[−5] 2.2852 0.0072 1.51[−5]
4p4d 3P1 2.2877 0.0009 2.61[−7] 2.3108 0.0002 1.36[−8]
4p4d 1P1 2.4491 0.0382 3.97[−4] 2.4393 0.0185 9.34[−5]
4d4f 3D1 4.0879 0.0004 2.84[−8] 4.1223 0.0001 2.45[−9]
4d4f 3P1 4.0937 0.0002 3.76[−9] 4.1304 0.0001 1.34[−9]
4d4f 1P1 4.2196 0.0134 2.84[−5] 4.1995 0.0021 6.76[−7]

α0(4s2 1S0, 4) = 2.6765 α0(4s2 1S0, 4) = 2.5306
4s5p 3P1 2.2190 0.0976 2.86[−3] 2.2562 0.1016 3.05[−3]
4s5p 1P1 2.2382 0.2225 1.47[−2] 2.2740 0.2330 1.59[−2]
4p5s 3P1 2.6390 0.0094 2.22[−5] 2.6754 0.0102 2.59[−5]
4p5s 1P1 2.7054 0.0313 2.41[−4] 2.7203 0.0368 3.32[−4]
4p5d 3D1 3.2613 0.0069 9.66[−6] 3.2947 0.0040 3.21[−6]
4p5d 3P1 3.3174 0.0056 6.40[−6] 3.3478 0.0029 1.70[−6]
4p5d 1P1 3.3418 0.0167 5.59[−5] 3.3397 0.0071 9.95[−6]
4d5p 3D1 3.8892 0.0014 3.26[−7] 4.0009 0.0004 3.27[−8]
4d5p 3P1 3.9355 0.0020 6.53[−7] 3.9945 0.0004 2.64[−8]
4d5p 1P1 3.9854 0.0167 4.65[−5] 4.1277 0.0019 5.98[−7]

α0(4s2 1S0, 5) = 0.0180 α0(4s2 1S0, 5) = 0.0193

α0(4s2 1S0) = 2.699 α0(4s2 1S0) = 2.555

Designations: �E = E(4s2 1S0) − E(4l′nl (1,3)L1),
D = 〈4s2 1S0‖D‖4l′nl (1,3)L1〉,
I = I (4l′nl (1,3)L1) = 2

3
|〈4s2 1S0‖D‖4l′nl (1,3)L1〉|2
E(4s2 1S0)−E(4l′nl (1,3)L1)

,

α0(4s2 1S0, n) = ∑
1,3Lll′ I (4l′nl (1,3)L1). All values are in au.

level |aJ 〉. In the case of the 4s2 1S0 ground state of Zn-like
ions, we can rewrite equation (5) as

α0(4s2 1S0) = 2

3

∑
n

∑
1,3Lll′

|〈4s2 1S0‖D‖4l′nl (1,3)L1〉|2
E(4s2 1S0) − E(4l′nl (1,3)L1)

, (6)

where the sum over ll′ (1,3)L1 is a sum over all states included
in the odd-parity complex with J = 1. In the case of n = 4,
that complex consists of eight states: 4s4p 1,3P1, 4p4d 3D1,

4p4d 1,3P1, 4d4f 3D1 and 4d4f 1,3P1. In the case of n =
5 and 6, the odd-parity complex with J = 1 includes the
following states: 4snp 1,3P1, 4pnd 3D1, 4pnd 1,3P1, 4dnp 3D1,

4dnp 1,3P1, 4dnf 3D1 and 4dnf 1,3P1.
In table 7, we list contributions to dipole polarizability of

the 4s2 1S0 ground state in Zn-like krypton. Both first-order
and second-order RMBPT values are listed for comparison.
The following designations are used in this table:

α0(4s2 1S0, n) =
∑

1,3Lll′
I (4l′nl (1,3)L1)

(7)

I (4l′nl (1,3)L1) = 2

3

|〈4s2 1S0‖D‖4l′nl (1,3)L1〉|2
(E(4s2 1S0) − E(4l′nl (1,3)L1))

.

We also use short labels E(4s2 1S0) − E(4l′nl (1,3)L1) = �E

and 〈4s2 1S0‖D‖4l′nl (1,3)L1〉 = D. The largest contribution
to the polarizability of the 4s2 1S0 ground state in Zn-
like krypton comes from the 4s2 1S0–4s4p 1P1 transition
since the value of I (4s4p (1)P1) is almost equal to the
α0(4s2 1S0, 4) value (i.e. contribution from 4s4p states).
All other 4s2 1S0–4l4l′ 1,3L1 transitions contribute less than

1% to the α0(4s2 1S0, 4) value. Contributions from the
4s2 1S0–4l5l′ 1,3L1 transitions give the α0(4s2 1S0, 5) values
equal to 0.0180 au and 0.0193 au, in the first and second
orders, respectively (see the second line from bottom in
table 7). The α0(4s2 1S0, 6) value (i.e. contribution from
4l6l′ states) is equal to 0.004 07 au and 0.005 11 au, in
the first and second orders, respectively. The n = 5 and
n = 6 contributions are only 0.7% and 0.2% of the n = 4
contribution, respectively, i.e. the sum over n converges very
fast. Truncating the sum over n in equation (7) to n = 6
results in 0.2% numerical accuracy. The final result for the
dipole polarizability of the 4s2 1S0 ground state in Zn-like
krypton is given in the last line of table 7. The experimental
value of α0(4s2 1S0) given by Lundeen and Fehrenbach [88]
(2.69(4) au) is in agreement with our value (2.699 au) evaluated
in the first-order approach. However, our final value, 2.56
au, is lower by 5%. More accurate configuration + all-
order calculations [103] that include correlations in the more
complete way are needed to resolve the discrepancy.

In table 8, we list dipole polarizabilities of the 4s2 1S0

ground state in Zn-like ions with Z = 33–47. We compare our
RMBPT values with theoretical results given in [89]. In that
paper, the polarizabilities were calculated using the lifetime
measurements for the lowest resonance transition. It was
underlined in [89] that, alternatively, measurements of the
polarizabilities can be used to deduce lifetimes. Therefore, we
include in table 8 our RMBPT results for the lifetimes of the
4s4p 1P1 level and oscillator strengths for the 4s2 1S0–4s4p 1P1
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Table 8. Electric-dipole polarizability of the 4s2 1S0 ground state, lifetime of the 4s4p 1P1 level and oscillator strength for the
4s2 1S0–4s4p 1P1 transition in Zn-like ions with Z = 33–47. Comparison between RMBPT values and theoretical results given in [89].
Columns with (� (in %)) labels show difference between RMBPT and [89] values.

Polarizability (au) Lifetime (ns) Oscillator strengths

Z RMBPT [89] � (%) RMBPT [89] � (%) RMBPT [89] � (%)

33 6.275 6.19(20) 1.4 0.2325 0.23(3) 1.1 1.582 1.558 1.5
34 4.456 4.61(11) −3.5 0.1677 0.16 4.6 1.568 1.620 −3.3
35 3.350 3.37(8) −0.6 0.1317 0.126 4.3 1.532 1.560 −1.8
36 2.555 2.70(5) −5.7 0.1017 0.096(3) 5.6 1.520 1.598 −5.1
37 2.003 2.00(4) 0.1 0.0842 0.084 0.2 1.476 1.468 0.5
38 1.621 1.597(33) 1.5 0.0710 0.071 0.0 1.443 1.429 1.0
39 1.324 1.299(27) 1.9 0.0598 0.061 2.0 1.419 1.394 1.8
40 1.101 1.071(21) 2.7 0.0516 0.052 0.8 1.390 1.362 2.0
41 0.924 0.895(17) 3.1 0.0448 0.046 2.7 1.363 1.334 2.1
42 0.783 0.755(15) 3.6 0.0393 0.040 1.8 1.337 1.307 2.2
43 0.670 0.644(12) 3.9 0.0346 0.035 1.2 1.314 1.282 2.4
44 0.578 0.552(10) 4.5 0.0307 0.031 1.0 1.289 1.260 2.2
45 0.500 0.477(8) 4.6 0.0273 0.028 2.6 1.267 1.238 2.3
46 0.436 0.413(7) 5.3 0.0245 0.025 2.0 1.245 1.216 2.3
47 0.382 0.361(6) 5.5 0.0220 0.022 0.0 1.224 1.199 2.0

transition in Zn-like ions with Z = 33–47. We also list the
relative differences between our results and those of [89].

We see from table 8 that the largest disagreement (about
5%) between our RMBPT values and results from [89] for
relatively low-Z ions is for Zn-like krypton. Since the
lifetime value used in [89] was obtained directly from the
polarizability measurement of Lundeen and Fehrenbach [88],
it is expected that the polarizability value of [89] exactly
agrees with the measurement of [88], since it is based directly
on this measurement (see also [67]). We already addressed
that discrepancy in the previous paragraph. The differences
between the polarizability results for remaining relatively low-
Z ions (Z = 33–39) vary but either within or close to the
uncertainties quoted in [89]. Therefore, the agreement for
these ions is very good. For higher Z ions, we observe a
systematic increase between our polarizability values and that
of [89]. We note that all of these higher-Z values are based on
extrapolated lifetime data owing to lack of measured data. It
would be expected that the accuracy of the extrapolated data
decreases for higher Z. However, we find excellent agreement
(0–2%) between both results for the lifetime and oscillator
strengths shown in this table for Zn-like ions with Z = 37–
47. Therefore, the systematic increase of the differences
between the polarizabilities may be due to the procedure used
in [89] to deduce polarizabilities from the lifetime results. This
difference may also be due to increased relativistic effects
contributing to the α0(4s2 1S0) polarizability in high-Z ions.
Our calculations are intrinsically relativistic, and we expect
the accuracy of our values to actually improve for higher Z
owing to decreased correlation corrections.

Contribution of relativistic effects is illustrated in
figure 6 where we plot electric-dipole polarizabilities of
the 4s2 1S0 ground state in Zn-like ions as functions of Z.
Together with the α0(4s2 1S0) value (curve ‘3’), we illustrate
contributions of two channels: the 4s2 1S0–4snp 1P1 and
4s2 1S0–4snp 3P1 transitions, where n = 4 and 5. Those
channels give numerical values for the following terms:
[I (4s4p 1P1) + I (4s4p 1P1)] and [I (4s4p 3P1) + I (4s4p 3P1)]
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Figure 6. Contribution to dipole polarizability of the 4s2 1S0 ground
state in Zn-like ions as functions of Z.

(see equation (7)), described by curves ‘1’ and ‘2’,
respectively. The contribution of [I (4s4p 3P1) + I (4s4p 3P1)]
term increases with Z and for Z > 87 even became larger
than the [I (4s4p 1P1) + I (4s4p 1P1)] term. The [I (4s4p 3P1) +
I (4s4p 3P1)] term needs to be included in calculation of the
4s2 1S0 ground state polarizability in Zn-like ions with Z > 37
if we want to guarantee 1% accuracy. That term was not
considered in [89].

We already mentioned that the largest contribution to the
ground state 4s2 polarizabilities in Zn-like ions comes from the
4s–4p one-electron transition 4s2 1S0–4s4p 1P1. To estimate
the effect of the continuous contributions, we carried out
additional calculations of the ground state 4s polarizabilities in
Cu-like ions. We find that the continuum contributes less than
0.2–0.3% to the value of the ground state 4s polarizabilities in
Cu-like ions. We note that Sr 5s2 ground state polarizability
has been studied in detail in [104, 105] using a combination
of the configuration interaction and many-body perturbation
theory. The continuum contribution has been included is
those works. The same (n = 5) single transition was
found to give overwhelmingly dominant contribution to
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the polarizability. Replacement of its contribution by the
value determined from the precision experiment modified
the final result by about 2.5% which exceeds the continuum
contribution. Therefore, the main uncertainty in the ground
state polarizability calculation comes from the uncertainty in
the E1 matrix element for the dominant transition.

4. Conclusion

We have presented a systematic second-order relativistic
MBPT study of the reduced matrix elements, oscillator
strengths and transition rates for the 4s–4p, 4p–4d, 4d–4f
electric-dipole transitions in zinc-like ions with the nuclear
charge Z ranging from 33 to 100. Our retarded E1 matrix
elements include correlation corrections from Coulomb and
Breit interactions. Both length and velocity forms of the matrix
elements were evaluated, and small differences, caused by the
non-locality of the starting DF potential, were found between
the two forms. Contributions from negative energy states
were also included in order to improve the agreement between
results calculated in lengths and velocity gauges. Second-
order RMBPT transition energies were used in our evaluation
of the oscillator strengths and transition rates. Ground state
scalar α0(4s2 1S0) polarizabilities were calculated for Zn-like
ions (Z = 33–100). To evaluate the α0(4s2 1S0) polarizabilities,
we calculate RMBPT energies for the odd-parity 4l5l′ complex
with J = 1 and line strengths between the even-parity 4l4l′

complex with J = 0 and the odd-parity 4l5l′, 4l6l′ complexes
with J = 1. These calculations are compared with other
calculations and with available experimental data. For Z �
33, our data give accurate benchmark values for transition
properties of Zn-like ions.
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[59] Heckmann P H, Möller G, Träbert E, Wagner C, Martinson I,
Blanke J H and Sugar J 1991 Phys. Scr. 44 151

[60] Curtis L J 1992 J. Opt. Soc. Am. B 9 5
[61] Hibbert A and Bailie A C 1992 Phys. Scr. 45 565
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