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The energies of the 44 even-parity and 40 odd-parity �4l4l�� states of ions of the zinc isoelectronic sequence
are determined through second order in relativistic many-body perturbation theory. Our calculations start from
a Ni-like V�N−2� Dirac-Fock potential. Two alternative treatments of the Breit interaction are investigated. In the
first approach, we omit Breit contributions to the Dirac-Fock potential and evaluate Coulomb and Breit-
Coulomb corrections through second order perturbatively. This approach was used previously to evaluate the
energies of Be-, B-, Mg-, and Yb-like systems. In the second approach, we include both Coulomb and Breit
contributions to the Breit-Dirac-Fock potential and then treat the residual Breit and Coulomb interactions
perturbatively. The results obtained from the two approaches are compared and discussed. Theoretical excita-
tion energies are compared with critically evaluated experimental data and with results from other recent
calculations. Trends of excitation energies including splitting of triplet terms as functions of nuclear charge
Z=34–100 are illustrated graphically for some states. The resulting Z dependence shows explicitly the effect
of mixing of �4p2+4s4d�, �4d2+4p4f�, and �4p4d+4s4f� configurations.
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I. INTRODUCTION

Multiconfiguration Dirac-Fock �MCDF� calculations for
the lowest excited states in the Zn-like sequence were re-
cently presented by Liu et al. in Ref. �1�. A project to apply
relativistic many-body perturbation theory �RMBPT� to two-
valence-electron systems was started about ten years ago,
and Be-, Mg-, Ca-, and Yb-like ions have been investigated
by this method in Refs. �2–5�. Generally, RMBPT calcula-
tions based on a Dirac-Fock basis set and first-order RMBPT
give results of comparable accuracy to those obtained from
MCDF codes, while the second-order RMBPT used in the
above-mentioned papers gives results beyond the MCDF ap-
proach. In the present paper, we use the RMBPT technique to
evaluate the energies of the 4l4l� states of Zn-like ions.

The 4s2 1S0−4s4p 1P1 transitions of ten Zn-like ions from
Ba26+ to W44+, observed by means of a laser-produced
plasma and a 2.2-m grazing-incidence spectrograph, were
presented by Reader and Luther �6�. Some years later the
4s2 1S0−4s4p 1P1 transitions of 29 Zn-like ions from Ru14+

to Dy36+, observed in a laser-produced plasma and a 10.7-m

grazing-incidence spectrograph, were reported by Acquista
and Reader �7�. Spectra of very highly charged ions of Au49+,
Pb52+, Bi53+, Th60+, and U62+ were observed in laser-
produced plasmas generated by the OMEGA laser by Seely
et al. �8�. The agreement between the measured transition
energies and the transition energies calculated within the
MCDF approximation �Grant code� was observed to improve
with increasing Z �8�. The intercombination lines of the zinc
sequence corresponding to the transition 4s2 1S0−4s4p 3P1,
observed for Xe24+, La27+, Nd30+, Eu33+, Gd34+, and Yb40+ in
the Princeton Large Torus tokamak discharge, were pre-
sented by Hinnov et al. �9�. Spectra of the Zn-like ions Rb
VIII–Mo XIII were excited with sparks and laser-produced
plasmas by Litzen and Reader in Ref. �10�. The observed
energy levels of the 4s2, 4s4p, 4p2, 4s4d, 4s5s, 4s5p, 4s5d,
and 4p5s configurations were interpreted by means of least-
squares parameter fits and Hartree-Fock calculations. An
identification of n=4, �n=0 transitions in the spectra of
zinc-like ions from Z=37 �Rb9+� to Z=50 �Sn22+� was re-
ported by Churilov et al. in Ref. �11�. The spectra were ex-
cited in a laser-produced plasma. The transition arrays �4s2

+4p2+4s4d�−4s4p were identified with the help of the ab
initio relativistic parametric potential method and the Slater-
Condon method with generalized least-squares fits of energy
parameters. Analysis of the spectrum of the Zn-like Kr6+ ion
for highly excited 4p4d and 4p5s configurations was re-
ported by Churilov in Ref. �12�. The spectrum of the Zn-like
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Kr6+ ion, excited in a capillary discharge and recorded with a
high-resolution spectrometer, was also studied. The �4p2

+4s4d�-4p4d and �4p2+4s5s�-4p5s transitions were identi-
fied in Ref. �12� for the first time. The results of the analysis
performed were confirmed by semiempirical calculations in
terms of the Hartree-Fock method.

New measurements of the Zn-like resonance lines
4s2 1S0−4s4p 1,3P1 of Pd16+ to Dy36+, with an uncertainty of
�0.005 Å, were reported by Sugar et al. in Ref. �13�. The
light source was the TEXT tokamak at the Fusion Research
Center in Austin, Texas. The transition energies for the Zn-
like ions were compared with values calculated with the mul-
ticonfiguration Dirac-Fock code of Indelicato and Desclaux
�14�. The difference in wavelengths between experimental
and theoretical values decreases with Z: a deviation of 1.1%
was found for Pd16+ and 0.4% for Dy36+. Measurements of
the resonance lines 4s2 1S0−4s4p 1,3P1 of Er38+ and Hf42+

were reported by Sugar et al. in Ref. �15�. Spectra of these
ions were observed by injecting the corresponding elements
into the plasma of the TEXT tokamak.

Using an electron-beam ion trap and a flat-field spectrom-
eter, the 4s2 1S0−4s4p 1P1 resonance lines of Zn-like ions of
Yb40+, W44+, Au49+, Pb52+, Th60+, and U62+ were observed

and their wavelengths measured with greatly improved accu-
racy by Utter et al. in Ref. �16�. The experimental results
were compared to those from laser-produced plasmas and to
theory, and significant differences were found �16�. The
4s2 1S0−4s4p 1P1 resonance lines of Zn-like ions of Os46+,
Bi83+, Th60+, and U62+ were also observed in an electron-
beam ion trap and their wavelengths measured using a high-
resolution flat-field spectrometer by Träbert et al. �17�. The
spectral resolution in Ref. �17� was 3–6 times better than
earlier measurements; however, substantial disagreement
was found with theoretical predictions.

TABLE I. Possible two-particle states in the 4lj4l�j� complexes; j j- and LS-coupling schemes.

J=0,1 J=2 J=3 J=4,5 ,6

j j coupl. LS coupl. j j coupl. LS coupl. j j coupl. LS coupl. j j coupl. LS coupl.

Odd-parity states

4s1/24p1/2�0� 4s4p 3P0 4s1/24p3/2�2� 4s4p 3P2 4p1/24d5/2�3� 4p4d 3D3 4p3/24d5/2�4� 4p4d 3F4

4p3/24d3/2�0� 4p4d 3P0 4p1/24d3/2�2� 4p4d 1D2 4p3/24d3/2�3� 4p4d 3F3 4s1/24f7/2�4� 4s4f 3F4

4d5/24f5/2�0� 4d4f 3P0 4p1/24d5/2�2� 4p4d 3D2 4p3/24d5/2�3� 4p4d 1F3 4d3/24f5/2�4� 4d4f iG4

4s1/24p1/2�1� 4s4p 3P1 4p3/24d3/2�2� 4p4d 3F2 4s1/24f5/2�3� 4s4p 3F3 4d3/24f7/2�4� 4d4f 3H4

4s1/24p3/2�1� 4s4p 1P1 4p3/24d5/2�2� 4p4d 3P2 4s1/24f7/2�3� 4s4p 1F3 4d5/24f5/2�4� 4d4f 3F4

4p1/24d3/2�1� 4p4d 3D1 4s1/24f5/2�2� 4s4p 3F2 4d3/24f5/2�3� 4d4f 3F3 4d5/24f7/2�4� 4d4f 3G4

4p3/24d3/2�1� 4p4d 3P1 4d3/24f5/2�2� 4d4f 3F2 4d3/24f7/2�3� 4d4f 3G3 4d3/24f7/2�5� 4d4f 3H5

4p3/24d5/2�1� 4p4d 1P1 4d3/24f7/2�2� 4d4f 1D2 4d5/24f5/2�3� 4d4f 3D3 4d5/24f5/2�5� 4d4f 3G5

4d3/24f5/2�1� 4d4f 3D1 4d5/24f5/2�2� 4d4f 3D2 4d5/24f7/2�3� 4d4f 1F3 4d5/24f7/2�5� 4d4f 1H5

4d5/24f5/2�1� 4d4f 3P1 4d5/24f7/2�2� 4d4f 3P2 4d5/24f7/2�6� 4d4f 3H6

4d5/24f7/2�1� 4d4f 1P1

Even-parity states

4s1/24s1/2�0� 4s2 1S0 4p1/24p3/2�2� 4p2 3P2 4s1/24d5/2�3� 4s4d 3D3 4p1/24f7/2�4� 4p4f 3F4

4p1/24p1/2�0� 4p2 3P0 4p3/24p3/2�2� 4p2 1D2 4p1/24f5/2�3� 4p4f 3F3 4p3/24f5/2�4� 4p4f 1G4

4p3/24p3/2�0� 4p2 1S0 4s1/24d3/2�2� 4s4d 3D2 4p1/24f7/2�3� 4p4f 1F3 4p3/24f7/2�4� 4p4f 3G4

4d3/24d3/2�0� 4d2 3P0 4s1/24d5/2�2� 4s4d 1D2 4p3/24f5/2�3� 4p4f 3G3 4d3/24d5/2�4� 4d2 3F4

4d5/24d5/2�0� 4d2 1S0 4p1/24f5/2�2� 4p4f 3F2 4p3/24f7/2�3� 4p4f 3D3 4d5/24d5/2�4� 4d2 1G4

4f5/24f5/2�0� 4f2 3P0 4p3/24f5/2�2� 4p4f 1D2 4d3/24d5/2�3� 4d2 3F3 4f5/24f5/2�4� 4f2 3H4

4f7/24f7/2�0� 4f2 1S0 4p3/24f7/2�2� 4p4f 3D2 4f5/24f7/2�3� 4f2 3F3 4f5/24f7/2�4� 4f2 3F4

4p1/24p3/2�1� 4p2 3P1 4d3/24d3/2�2� 4d2 3F2 4f7/24f7/2�4� 4f2 1G4

4s1/24d3/2�1� 4s4d 3D1 4d5/24d5/2�2� 4d2 3P2 4p3/24f7/2�5� 4p4f 3G5

4p3/24f5/2�1� 4p4f 3D1 4d3/24d5/2�2� 4d2 1D2 4f3/24f7/2�5� 4f2 3H5

4d3/24d5/2�1� 4d2 3P1 4f5/24f5/2�2� 4f2 3F2 4f3/24f7/2�6� 4f2 3H6

4f5/24f7/2�1� 4f2 3P1 4f5/24f7/2�2� 4f2 1D2 4f7/24f7/2�6� 4f2 1I6

4f7/24f7/2�2� 4f2 3P2
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FIG. 1. Diagrams for the contributions of Ev
�2� to the second-

order two-particle energy. V1 represents double sums over virtual
intermediate states, V2 represents single sums, V3 gives one-
potential terms, and V4 gives two-potential terms.
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A detailed theoretical investigation of the energy levels
for the n=4, �n=0 transitions of the ions Rb7+ to Xe24+

along the zinc isoelectronic sequence using the relativistic
Hartree-Fock method �Cowan code� was presented by Bié-
mont et al. in Ref. �18�. All configurations within the n=4
complex, both even and odd parities, were included in the
calculations. Using a well-established least-squares fitting
procedure, the average energies, Slater integrals, and spin-
orbit parameters were adjusted to obtain the best agreement
between calculated and established energy levels for ions
with Z�90.

Cheng and Wagner �19� compared multiconfiguration
Dirac-Fock energies with experiment for the 4s2 1S0
−4s4p 1P1 transition of the Zn-like ions Au49+, Pb52+, Bi53+,
Th60+, and U62+. The Coulomb, Breit, and quantum electro-
dynamic �QED� corrections to 4p-4d transitions were tabu-
lated for selected ions in the range Z=50–92. The agreement
found between theory and experiment was good enough to
show the importance of QED corrections in the spectra of
these highly stripped ions �19�.

The atomic structure of the low-energy configurations of
the Zn-like ions Rb7+ to W44+ was analyzed in detail by
Biémont in Ref. �20�. A MCDF technique was used to inves-
tigate the level crossings and compositions in the n=4 con-
figurations. Level energies, wavelengths, transitions prob-
abilities, and oscillator strengths were tabulated for Ag17+ to
W44+ �20�.

Calculated and experimentally determined transition ener-
gies were presented for the Zn isoelectronic sequence for the
elements with atomic numbers Z=50–92 by Brown et al. in
Ref. �21�. The excitation energies were calculated for the 84

levels belonging to the 10 configurations of the type 4l4l� by
using the Hebrew University Lawrence Livermore Atomic
Code �HULLAC�. The differences between the calculated and
experimental transition energies were determined for 16 tran-
sitions, and the excitation energies of the levels belonging to
the 4s4p, 4p2, 4s4d, and 4s4f configurations were derived
from the semiempirically corrected transition energies �21�.

Chou et al. �22� presented the 4s2 1S0−4s4p 1,3P1 excita-
tion energies in Zn-like ions, calculated by using the multi-
configuration relativistic random-phase approximation in-
cluding excitation channels from core electrons. The
disagreement between theory and experiment was reduced,
but discrepancies remained.

High-accuracy calculations of term energies and wave-
lengths of resonance lines in Zn-like ions were performed by
Vilkas and Ishikawa in Ref. �23� using relativistic multiref-
erence Møller-Plesset �MR-MP� perturbation theory.

In this paper, RMBPT through second order is used to
calculate energies of the 4s2, 4p2, 4d2, 4f2, 4s4d, and 4p4f
even-parity states and the 4s4p, 4s4f , 4p4d, and 4d4f odd-
parity states of ions of the zinc isoelectronic sequence for a
wide range of nuclear charges, Z=30–100. Two alternative
treatments of the Breit interaction are investigated. In the
first approach, we omit Breit contributions to the Dirac-Fock
potential and evaluate Coulomb and Breit-Coulomb correc-
tions through second order perturbatively. This approach was
used previously to evaluate energies of Be-, B-, Mg-, and
Yb-like systems. In the second approach, we include both
Coulomb and Breit contributions in the Breit-Dirac-Fock po-
tential and then treat the residual Breit and Coulomb inter-
actions perturbatively. QED corrections are inferred by a
combination of phenomenological and ab initio methods.

II. THEORETICAL TECHNIQUE

The RMBPT formalism developed previously �2–5� for
Be-, Mg-, Ca-, and Yb-like ions is used here to obtain
second-order energies. Differences in the calculation proce-
dure for Be-, Mg-, and Zn-like ions arise from the increased
size of the model space �4l4l� instead of 3l3l� and 2l2l� for
Mg- and Be-like ions, respectively� and the Dirac-Fock po-
tential �1s22s22p63s23p63d10 instead of 1s22s22p6 and 1s2

TABLE II. Contributions to the valence-electron energy Ev
�2� �a.u.� for v=4s, 4pj, 4dj, and 4f j for ions

with a Ni-like core from the three diagrams V1−V3 evaluated for the case of xenon, Z=54. Notation: a�b�
represents a�10b.

Coulomb Interaction: Breit-Coulomb Correction

4lj V1 V2 BV1 BV2 BV3

4s1/2 �7.875��2� 1.670��2� �5.017��4� 1.484��4� �6.667��3�
4p1/2 �8.025��2� 1.744��2� �6.873��4� 1.786��4� �6.919��3�
4p3/2 �7.529��2� 1.726��2� �6.231��4� 1.486��4� �6.728��3�
4d3/2 �7.769��2� 1.707��2� �6.800��4� 2.847��4� �7.191��3�
4d5/2 �7.609��2� 1.700��2� �6.480��4� 2.234��4� �7.157��3�
4f5/2 �6.486��2� 1.119��2� �4.872��4� 3.063��4� �4.172��3�
4f7/2 �6.400��2� 1.137��2� �3.790��4� 2.111��4� �4.008��3�
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potential terms.
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for Mg- and Be-like ions, respectively�. These differences
lead to much more laborious numerical calculations �84
states compared to 35 states in Mg-like ions and 10 in Be-
like ions�.

For atoms with two electrons outside closed shells, the
model space is formed from two-particle states of the type
av

†aw
† �0�, where �0� is the ground-state determinant of the

closed-shell core with N−2 electrons. The single-particle in-
dices v and w range over states in the valence shell. For our
study of low-lying states of Zn-like ions, v and w are the
4s1/2, 4p1/2, 4p3/2, 4d3/2, 4d5/2, 4f5/2, and 4f7/2 single-particle
states.

The model space for the n=4 complex in Zn-like ions has
44 even-parity states and 40 odd-parity states. These states
are summarized in Table I, where both j j and LS designa-
tions are given. When starting calculations from relativistic

Dirac-Fock wave functions, it is natural to use j j designa-
tions for uncoupled transition and energy matrix elements;
however, neither j j nor LS coupling describes the physical
states properly, except for the single-configuration state
4d5/24f7/2�6��4d4f 3H6.

The second-order effective Hamiltonian can be written

��JM�v�w���H�2���JM�vw�� = �vv��ww��Ev
�2� + Ew

�2�� + Vv�w�vw
�2� .

�1�

Analytical expressions for the second-order one-particle va-
lence contribution Ev

�2� and two-particle correlation contribu-
tion Vv�w�vw

�2� were presented by Safronova et al. �2�. The

second-order Ev
�2� term consists of four contributions, V1, V2,

V3, and V4, represented in terms of Bruckner-Goldstone dia-

TABLE III. Diagonal and off-diagonal contributions to the second-order interaction term �a.u.� in the effective Hamiltonian matrix from
diagrams R1−R3 calculated using DF orbitals. These contributions are given for a two-electron ion with a Ni-like core and evaluated
numerically for the case of xenon, Z=54. Notation: a�b� represents a�10b.

Coulomb Interaction Breit-Coulomb Correction

4l1j14l2j2 4l3j34l4j4 J R1 R2 R3 BR1 BR2 BR3 BR4

4s1/24s1/2 4s1/24s1/2 0 �1.232��2� �4.912��4� �1.122��2� �4.105��5� �1.014��5� �5.473��7� �9.909��4�
4p1/24p1/2 4p1/24p1/2 0 �1.388��2� �5.217��4� �1.157��2� �6.230��5� �1.056��5� 1.231��5� �1.626��3�
4p3/24p3/2 4p3/24p3/2 0 �1.919��2� �7.845��4� �1.268��2� �1.067��4� �2.046��5� 1.153��5� �1.241��3�
4d3/24d3/2 4d3/24d3/2 0 �2.610��2� �8.734��4� �1.387��2� �1.814��4� �2.117��5� 3.975��5� �1.105��3�
4d5/24d5/2 4d5/24d5/2 0 �3.167��2� �1.076��3� �1.346��2� �2.407��4� �2.999��5� 4.016��5� �8.081��4�
4f5/24f5/2 4f5/24f5/2 0 �5.191��2� �1.531��3� �5.151��3� �3.886��4� �3.393��5� 7.237��5� �7.014��4�
4f7/24f7/2 4f7/24f7/2 0 �5.759��2� �1.897��3� �3.327��3� �4.620��4� �2.890��5� 5.639��5� �4.280��4�
4s1/24s1/2 4p1/24p1/2 0 8.070��3� 3.825��4� 2.394��2� 4.743��5� 1.013��5� 1.688��5� 1.818��4�
4p1/24p1/2 4s1/24s1/2 0 6.786��3� 3.606��4� 2.186��2� 4.207��5� 9.652��6� 1.566��5� 2.591��4�
4s1/24s1/2 4p3/24p3/2 0 1.145��2� 5.399��4� 3.373��2� 7.490��5� 1.563��5� 1.011��5� 2.289��4�
4p3/24p3/2 4s1/24s1/2 0 9.109��3� 4.986��4� 2.982��2� 6.261��5� 1.463��5� 8.612��6� 3.553��4�
4s1/24s1/2 4d3/24d3/2 0 �1.284��2� �4.230��4� �3.957��3� �1.104��4� �1.207��5� 3.927��6� �6.768��5�
4d3/24d3/2 4s1/24s1/2 0 �6.581��3� �3.529��4� �3.122��3� �5.332��5� �1.037��5� 3.080��6� �3.361��4�
4s1/24s1/2 4d5/24d5/2 0 �1.635��2� �5.227��4� �4.709��3� �1.367��4� �1.575��5� 1.127��5� �7.619��5�
4d5/24d5/2 4s1/24s1/2 0 �8.106��3� �4.335��4� �3.691��3� �6.701��5� �1.328��5� 9.540��6� �4.165��4�
4s1/24s1/2 4f5/24f5/2 0 8.353��3� 6.994��4� �3.339��3� 7.689��5� 1.407��5� �1.799��5� 5.939��5�
4f5/24f5/2 4s1/24s1/2 0 6.740��3� 5.309��4� �1.732��3� 5.680��5� 1.055��5� �1.104��5� 3.985��5�
4s1/24s1/2 4f7/24f7/2 0 9.373��3� 8.279��4� �4.247��3� 9.810��5� 1.393��5� �3.321��5� 7.633��5�
4f7/24f7/2 4s1/24s1/2 0 7.880��3� 6.258��4� �2.186��3� 6.906��5� 1.035��5� �1.898��5� 6.242��5�
4s1/24p1/2 4s1/24p1/2 1 �1.116��2� �3.244��4� �3.691��3� �1.720��5� �1.424��6� �9.082��6� �1.234��3�
4s1/24p3/2 4s1/24p3/2 1 �1.635��2� �5.108��4� �1.808��2� �5.090��5� �6.072��6� �1.817��5� �1.139��3�
4p1/24d3/2 4p1/24d3/2 1 �2.080��2� �4.624��4� �1.868��2� �8.134��5� �4.642��6� �2.348��6� �1.378��3�
4p3/24d3/2 4p3/24d3/2 1 �1.370��2� �3.126��4� �1.389��2� �2.939��5� �2.219��6� �9.253��6� �1.062��3�
4p3/24d5/2 4p3/24d5/2 1 �2.759��2� �6.182��4� �1.539��2� �1.268��4� �8.716��6� �1.102��5� �1.033��3�
4d3/24f5/2 4d3/24f5/2 1 �3.750��2� �4.377��5� �1.261��2� �1.343��4� �2.922��6� 7.727��6� �9.562��4�
4d5/24f5/2 4d5/24f5/2 1 �2.936��2� �3.442��5� �1.259��2� �8.850��5� �2.529��6� �4.037��6� �7.089��4�
4d5/24f7/2 4d5/24f7/2 1 �5.000��2� �6.501��5� �1.122��2� �2.541��4� �2.665��6� �5.673��6� �6.759��4�
4s1/24p1/2 4s1/24p3/2 1 �7.735��3� �2.764��4� �2.165��2� �2.964��5� �3.648��6� �1.997��5� �1.958��4�
4s1/24p3/2 4s1/24p1/2 1 �7.508��3� �2.738��4� �2.131��2� �2.915��5� �3.617��6� �1.979��5� �2.081��4�
4s1/24p1/2 4p1/24d3/2 1 �9.549��3� �2.403��4� �2.203��2� �4.455��5� �4.065��6� �2.015��5� �1.652��4�
4p1/24d3/2 4s1/24p1/2 1 �7.207��3� �2.205��4� �1.921��2� �3.589��5� �3.793��6� �1.800��5� �2.833��4�
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grams in Fig. 1. V1 represents double sums over virtual in-
termediate states, V2 represents single sums, V3 gives one-
potential terms, and V4 gives two-potential terms. The
dashed lines designate Coulomb plus Breit interactions. Dia-
grams for the second-order two-particle energy Vv�w�vw

�2� are
given in Fig. 2. R1 represents double sums, R2 represents
single sums, R3 gives random-phase-approximation �RPA�
terms, and R4 gives one-potential terms.

A. Example: Energy matrix for Xe14+

In Tables II and III, we give details of the second-order
contributions to the energies for the special case of Zn-like
xenon, Z=54. In Table II, we show the second-order contri-
butions to the valence energy Ev

�2�. Contributions from the
various diagrams in Fig. 1 are given in this table for the case
of a DF potential �excluding Breit terms� and a perturbative
treatment of the Breit interaction through first order. In this
case, the one-potential operator, represented by a solid circle
in Fig. 1, contains contributions only from the Breit interac-
tion �2�. Thus, to first order in the Breit interaction, diagram
V4 does not contribute. However, one should note that when
using non-DF orbitals, the Coulomb interaction also contrib-

utes to the one-potential operator. Indeed, for hydrogenic or-
bitals V4 can give the largest contribution among the four
valence diagrams �for details, see Ref. �2��. As to the V3
diagram, it follows that this gives a Breit-Coulomb contribu-
tion of first order in the Breit interaction, but no Coulomb-
Coulomb contribution. Noting that the dashed line corre-
sponds to the sum of the Coulomb and Breit interactions, one
sees that diagrams V1 and V2 can give both Coulomb-
Coulomb and Breit-Coulomb contributions. To summarize,
the second-order Coulomb-Coulomb contributions are repre-
sented by two diagrams V1 and V2 and the Breit-Coulomb
contributions by three diagrams BV1, BV2, and BV3 �see
Table II�. We can see from this table that the largest contri-
bution to the second-order valence energy Ev

�2� is the double-
sum diagram V1. The single-sum diagram V2 compensates
the V1 contribution by a factor of 1/5. A substantial contri-
bution to Ev

�2� from Breit-Coulomb operators arises only from
BV3. The other two terms BV1 and BV2 are smaller than the
dominant V1 term by two orders of magnitude.

Table III gives the second-order interaction energy, shown
in Fig. 2, for the special case Z=54. These diagrams contrib-
ute for systems with two �or more� electrons above a closed
core. There are 84 diagonal and 580 nondiagonal matrix el-
ements for �4l4l���J� states in j j coupling. We calculated
contributions for the 664 matrix elements using DF orbitals.
We illustrate our results by 17 even-parity matrix elements
with J=0 and 14 odd-parity matrix elements with J=1 in
Table III. This table includes data of three diagrams from
Coulomb-Coulomb operators and four diagrams from Breit-
Coulomb operators for the second-order two-particle energy,
Vv�w�vw

�2� . As can be seen from Table III, the largest contribu-

tions to the value of Vv�w�vw
�2� are from the double sums �dia-

gram R1 and R3 representing the RPA contribution�. The larg-
est contribution among diagrams BR1–BR4 describing the
second-order Breit-Coulomb terms are the one-potential
terms represented by the BR4 diagram. It should be noted
that the R4 contributions vanish in the case of the Coulomb-
Coulomb operator �2�. As one can see from Table III, the
ratio of off-diagonal and diagonal matrix elements is 0.1–0.5
for most cases. Note that the off-diagonal matrix elements
are not symmetric; the values of the R�i��v�w��J� ,vw�J�� and
R�i��vw�J� ,v�w��J�� matrix elements differ in some cases by
a factor of 2–3 and occasionally have opposite signs.

The orbitals used in the present calculations were ob-
tained as linear combinations of B-splines. These B-spline
basis orbitals were determined using precisely the method
described in Ref. �26�. We used 50 B-splines of order 9 for
each single-particle angular momentum state, and we in-
cluded all orbitals with orbital angular momentum l�9 in
our single-particle basis.

B. Z dependence of diagram contributions

In Fig. 3 we illustrate the Z dependence of the second-
order contributions for the special case of the �4p3/2�2

− �4p3/2�2�J=0� diagonal matrix element in two cases: �a�
Coulomb-Coulomb diagram contributions and �b� Breit-
Coulomb diagram contributions. The labels in Figs. 3�a� and
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FIG. 3. �Color online� Contributions to the second-order
�4p3/2

2 �− �4p3/2
2 ��J=0� diagonal matrix element for the DF potential:

�a� Coulomb interaction EDF
�2�, �b� Breit interaction BDF

�2�.
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3�b� are the same as those used in Tables II and III. We can
see from Fig. 3�a� that the R1 diagram contribution is the
largest for low-Z ions, while the V1 diagram becomes domi-
nant at high Z. The largest contributions of Breit-Coulomb
type arise from the diagram BV3 �see Fig. 3�b��.

For each of the second-order matrix elements, the Z de-
pendence of each contributing diagram is smooth. Moreover,
the leading term in a power series in Z for the second-order
Coulomb-Coulomb energy is a constant. We may write

E�2� = E20 + E22��Z�2 + E24��Z�4 + ¯

+
1

Z
�E30� + E32� ��Z�2 + E34� ��Z�4 + ¯� + ¯ . �2�

The 1 /Z terms in Eq. �2� describe the deviation from con-
stancy in the DF case which is obvious for Z	40 from Fig.
3�a�. The leading term in Z for the second-order Breit-
Coulomb contributions is ��Z�2. The corresponding expan-
sion in powers of Z is

B�2� = ��Z�2	B20 + B22��Z�2 + B24��Z�4 + ¯

+
1

Z
�B30� + B32� ��Z�2 + B34� ��Z�4 + ¯� + ¯
 . �3�

The curves for E�2� shown in Fig. 3�a� change by less than a
factor of 2 over the range Z=40–100. The same is true of
B�2�, provided we divide out the factor ��Z�2.

C. Diagonalization and QED effects

The matrix elements presented so far represent the
second-order matrix elements of the effective model-space
Hamiltonian, Eq. �1�, before diagonalization within the
model space. To determine the first-order energies of the
states under consideration, we diagonalize the �symmetric�
first-order effective Hamiltonian, including both the Cou-
lomb and Breit interactions. The second-order Coulomb cor-
rections were determined by solving the nonsymmetric ei-
genvalue equation

HeffC = EC , �4�

with the first- plus second-order effective Hamiltonian.
Terms of first and second order in the Coulomb interaction,
and up to first-order in the Breit interaction, are included in
Heff. The resulting eigenvectors are used to determine the
second-order Breit correction and the QED correction. The
difference between the energies obtained using the first- plus
second-order Hamiltonian and those determined using only
the first-order Hamiltonian give the second-order energies.

To determine QED corrections for Zn-like ions, one can
in principle use a generalization of the ab initio screened
QED method of Blundell �24� for Cu-like ions, which consist
of a single valence electron outside a Ni-like core. In those
calculations, the self-energy and vacuum polarization of the
valence state were calculated in the sum of the nuclear po-
tential and Hartree potential of the core, thus accounting
nonperturbatively for the bulk of the screening effect of the
core electrons. Further small screening contributions were

then added perturbatively corresponding to the exchange �as
opposed to direct� interaction between the valence electron
and the core and to the relaxation of the core in the presence
of the valence electron. A similar approach was presented
recently for Cu-like ions by Chen et al. �25� in which the
exchange potential was treated via a local-density Slater-type
potential. Now, in setting up a QED calculation for Zn-like
ions, just as in RMBPT, it is natural to start from a suitable
VN−2 potential for the closed-shell Ni-like core. A subset of
the QED perturbation terms for Zn-like ions are then identi-
cal to those discussed above that have already been calcu-
lated for the Cu-like ions, where the potential was also taken
to be that of the Ni-like core. Treating these terms as an
effective interaction within RMBPT, one finds that they all
correspond to one-body operators, analogous to the RMBPT
diagrams in Fig. 1. Accordingly, they contribute terms of the
form �vv��ww���
v+�
w� to the diagonal of the effective
Hamiltonian �1�, where �
v is the screened QED shift of a
valence electron v for a Cu-like ion. The model-space
Hamiltonian should then be rediagonalized. As mentioned
above, we treat the QED perturbatively within the model
space by using the eigenvectors determined by diagonalizing
Heff through second order.

A full treatment of QED in Zn-like ions will also bring in
the screening effect of the two valence electrons on each
other. These QED diagrams are similar to those describing
the core relaxation in Ref. �24�, but with the core electron
replaced by the other valence electron. Treated as effective
interactions within RMBPT, such diagrams correspond to
two-body operators, analogous to the RMBPT diagrams in
Fig. 2, and contribute to both the diagonal and off-diagonal
terms of the effective Hamiltonian. We have estimated these
contributions, finding them to be small, at the 0.01 eV level
for Z=74. This is of the order of the experimental error, as
well as at the expected level of further omitted QED effects
�such as the frequency-dependent and negative-energy con-
tributions of the RMBPT terms�, and we omit them here.
Note that the dominant effect of the two valence electrons in
a Zn-like ion arises from the one-body QED terms, coupled
with the fact that the physical states are now linear combi-
nations of j j-coupled states, as discussed in the previous
paragraph.

When ab initio QED calculations for Cu-like ions are
available, we use them �in particular, for the 4s2 1S0
−4s4p 1P1 transition�. In other cases, the QED contributions
can be determined approximately using the one-electron hy-
drogenic Lamb shift data given in Refs. �27–30� with Z
→Z−12 for 4lj states. To check the accuracy of this ap-
proach, in Table IV we compare our one-electron QED cor-
rections thus calculated with the ab initio results of Blundell
�24� and Chen et al. �25� for Cu-like ions. We can see that
the disagreement between our phenomenological values for
one-electron QED and results from Refs. �24,25� is about
2%.

The first- and second-order energies are shown graphi-
cally in Figs. 4 and 5 and listed in Table V. In Fig. 4, we
show the Z dependence of the second-order Coulomb-
Coulomb contributions E�2� for five states. We can see from
Fig. 4 that the absolute value of E�2� slowly increases with Z.

The variation with Z of the second-order Coulomb energy
E�2�, the first- and second-order Breit energies B�1� and B�2�,
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and the QED contributions ELS is illustrated in Fig. 5. Data
for �4p2�1S0 and �4s2�1S0 states, respectively, are given in the
two panels of Fig. 5. We can see that E�2� is dominant up to
Z=74 for the �4p2�1S0 and �4s2�1S0 states. The QED contri-
bution ELS is smaller than all other contributions to the
�4p2�1S0 energy for all Z. The situation is somewhat different
for the �4s2�1S0 state where the curve ELS crosses B�2� first
for Z�37, then crosses the E�2� curve for Z�73, and for
higher Z is smaller than the B�1� values.

In Table V, we list the energies of the 44 even-parity and
40 odd-parity levels in Zn-like xenon �Z=54�. We tabulate
the following separate contributions: zeroth- plus first-order
energy E�0+1��E�0�+E�1�+B�1�, second-order Coulomb en-
ergy E�2�, second-order Breit-Coulomb correction B�2�, QED
correction ELS, and total theoretical energy Etot. Both j j- and
LS-coupling designations are used in Table V. As can be seen
from Table V, the values of the second-order contributions
E�2� and B�2� do not change very much inside complexes of
states with given J; however, the QED contributions ELS
differ by two to three orders of magnitude. The ratio of the
second-order Breit-Coulomb correction B�2� and Coulomb
energy E�2� is about 1/10, and the ratio of E�2� and E�0+1� is
about 1/300.

Energies, relative to the ground state, of odd- and even-
parity states with J=0–3, divided by �Z−21�2, are shown in
Fig. 6. It should be noted that Z was decreased by 21 to
provide a better presentation of the energy plots. As in Table
V, we use both j j- and LS-coupling designations. We plot the
limited number of energy levels to illustrate the change of
mixing of levels belonging to different configurations with

TABLE IV. QED corrections �eV� for Cu-like ions. Present results �a� given by a phenomenological
approach �see text� are compared with ab initio results of �b� Blundell �24� and �c� Chen et al. �25�.

4s−4p1/2 4s−4p3/2 4p1/2−4d3/2

Z �a� �b� �c� �a� �b� �c� �a� �c�

70 �1.09 �1.06 �1.08 �1.00 �0.96 �0.98 �0.08 �0.07

74 �1.37 �1.34 �1.36 �1.26 �1.22 �1.24 �0.12 �0.11

76 �1.53 �1.50a �1.52 �1.41 �1.36a �1.39 �0.15 �0.13

79 �1.81 �1.76a �1.78 �1.65 �1.60a �1.63 �0.20 �0.18

82 �2.11 �2.05 �2.07 �1.93 �1.88 �1.91 �0.26 �0.24

83 �2.22 �2.15 �2.17 �2.04 �1.98 �2.01 �0.29 �0.27

90 �3.13 �2.98 �3.00 �2.87 �2.78 �2.82 �0.52 �0.49

92 �3.44 �3.25 �3.27 �3.15 �3.05 �3.09 �0.61 �0.58

aCalculated for this work using the method of Ref. �24�.
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TABLE V. Energies of Zn-like xenon, Z=54. Notation: E�0+1�=E�0�+E�1�+B�1�, Etot=E�0+1�+E�2�+B�2�+ELS.

j j-label LSJ E�0+1� E�2� B�2� ELS Etot j j-label LSJ E�0+1� E�2� B�2� ELS Etot

4s1/24s1/2
1S0

�13511671 �30065 �3289 5796 �13539229 4s1/24p1/2
3P0

�13140633 �25693 �3405 2948 �13166783

4p1/24p1/2
3P0

�12646972 �32238 �3609 77 �12682742 4p3/24d3/2
3P0

�11675706 �30527 �3479 215 �11709498

4p3/24p3/2
1S0

�12319340 �32883 �3464 546 �12355141 4d5/24f5/2
3P0

�10152544 �34304 �2816 32 �10189632

4d3/24d3/2
3P0

�10950854 �33470 �3562 �70 �10987955

4d5/24d5/2
1S0

�10847155 �38502 �3581 93 �10889145 4s1/24p1/2
3P1

�13115850 �27091 �3427 2962 �13143406

4f5/24f5/2
3P0

�9394210 �33710 �2066 �15 �9430001 4s1/24p3/2
1P1

�12896460 �34923 �3408 3146 �12931645

4f7/24f7/2
1S0

�9319922 �42509 �2156 15 �9364572 4p1/24d3/2
3D1

�11789606 �34763 �3597 �8 �11827975

4p3/24d3/2
3P1

�11671056 �31134 �3475 220 �11705444

4s1/24d3/2
3D1

�12531305 �29570 �3488 288 �12564076 4p3/24d5/2
1P1

�11577394 �37148 �3523 322 �11617742

4p1/24p3/2
3P1

�12265732 �30605 �3407 2871 �12296872 4d3/24f5/2
3D1

�10171026 �34289 �2790 �40 �10208145

4p3/24f5/2
3D1

�10937322 �32693 �3530 9 �10973537 4d5/24f5/2
3P1

�10152632 �34275 �2797 34 �10189671

4d3/24d5/2
3P1

�10883941 �33013 �2753 239 �10919468 4d5/24f7/2
1P1

�10085007 �42449 �2840 54 �10130241

4f5/24f7/2
3P1

�9393494 �33563 �2052 �1 �9429110

4s1/24p3/2
3P2

�12997554 �24507 �3306 3185 �13022181

4s1/24d3/2
1D2

�12526850 �27902 �3478 409 �12557821 4s1/24f5/2
3F2

�11873828 �26011 �3518 �9 �11903366

4s1/24d5/2
3D2

�12392392 �26793 �3383 678 �12421889 4p1/24d3/2
1D2

�11799040 �30628 �3528 92 �11833103

4p1/24p3/2
3P2

�12256264 �30698 �3399 2887 �12287473 4p1/24d5/2
3F2

�11699060 �28599 �3449 242 �11730866

4p3/24p3/2
1D2

�12158522 �38576 �3455 2678 �12197875 4p3/24d3/2
3D2

�11656870 �30635 �3447 296 �11690657

4p1/24f5/2
3F2

�11057928 �28833 �2980 �17 �11089758 4p3/24d5/2
3P2

�11475392 �32520 �2681 2872 �11507721

4p3/24f5/2
3D2

�10973165 �33116 �3376 �30 �11009686 4d3/24f5/2
3F2

�10235896 �29183 �2771 �66 �10267915

4p3/24f7/2
1D2

�10959132 �31286 �3344 38 �10993724 4d3/24f7/2
1D2

�10202411 �30463 �2735 24 �10235586

4d3/24d3/2
3F2

�10920900 �31934 �3440 102 �10956172 4d5/24f5/2
3D2

�10171908 �33980 �2779 7 �10208659

4d5/24d5/2
3P2

�10887364 �32929 �2783 233 �10922842 4d5/24f7/2
3P2

�10153455 �34089 �2768 51 �10190261

4d3/24d5/2
1D2

�10818869 �41960 �2978 244 �10863563

4f5/24f5/2
3F2

�9434878 �30916 �2040 �32 �9467865 4s1/24f5/2
3F3

�11814654 �27024 �3485 136 �11845026

4f5/24f7/2
1D2

�9402855 �34864 �2043 2 �9439761 4s1/24f7/2
1F3

�11676200 �31069 �3435 327 �11710377

4f7/24f7/2
3P2

�9392174 �33408 �1995 28 �9427548 4p1/24d5/2
3F3

�11621753 �31875 �3340 646 �11656322

4p3/24d3/2
3D3

�11473127 �32576 �2652 2885 �11505471

4s1/24d5/2
3D3

�12237979 �30216 �3373 2980 �12268587 4p3/24d5/2
1F3

�11400271 �42726 �2872 2472 �11443397

4p1/24f5/2
3F3

�11063092 �31087 �2803 �2 �11096984 4d3/24f5/2
3F3

�10227665 �28968 �2726 �7 �10259367

4p1/24f7/2
1F3

�11049842 �30248 �2803 55 �11082838 4d3/24f7/2
3G3

�10184046 �35170 �2825 �65 �10222106

4p3/24f5/2
3G3

�10973122 �30223 �3302 49 �11006599 4d5/24f5/2
3D3

�10162161 �34738 �2781 18 �10199663

4p3/24f7/2
3D3

�10915648 �30505 �2743 243 �10948653 4d5/24f7/2
1F3

�10134042 �39230 �2785 75 �10175983

4d3/24d5/2
3F3

�10889706 �32811 �2794 242 �10925069

4f5/24f7/2
3F3

�9433122 �30734 �2002 �1 �9465859 4s1/24f7/2
3F4

�11709105 �23631 �3380 374 �11735742

4p3/24d5/2
3F4

�11469943 �32663 �2620 2901 �11502324

4p1/24f7/2
3F4

�11063724 �28330 �2859 45 �11094868 4d3/24f5/2
1G4

�10257408 �27780 �2737 �78 �10288004

4p3/24f5/2
1G4

�10977282 �26166 �3096 148 �11006395 4d3/24f7/2
3H4

�10240599 �27686 �2704 �3 �10270993

4p3/24f7/2
3G4

�10959128 �29780 �3186 124 �10991970 4d5/24f5/2
3F4
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4d3/24d5/2
3F4
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3G4
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1G4
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4f5/24f5/2
3H4

�9447725 �30804 �2029 �46 �9480604 4d3/24f7/2
3H5

�10242201 �27756 �2690 �2 �10272649

4f5/24f7/2
3F4

�9432277 �30859 �1990 �1 �9465128 4d5/24f5/2
3G5

�10161826 �34269 �2730 66 �10198760

4f7/24f7/2
1G4

�9427465 �30834 �1948 46 �9460201 4d5/24f7/2
1H5

�10088749 �49263 �2809 29 �10140792

4d5/24f7/2
3H6

�10225302 �27243 �2648 86 �10255107

4p3/24f7/2
3G5

�10911503 �30844 �2635 290 �10944690

4f5/24f7/2
3H5

�9444912 �30584 �1974 �1 �9477471

4f5/24f7/2
3H6

�9441864 �30385 �1912 44 �9474117

4f7/24f7/2
1I6

�9400377 �40584 �1957 9 �9442909
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change of Z. We can observe such mixing for the levels of
odd-parity complexes with J=2 and J=3 �top panels of Fig.
6� and even-parity complexes with J=2 �left-bottom panel of
Fig. 6� in the range Z=65–68. The curve for the energy of
the 4p4d 1F3 level almost crosses the curve for the 4s4f 3F3
level. The difference of energies between the two levels is
equal to 8800 cm−1 at Z=68 �about 0.25% from the energy
of these levels�. We can see a similar behavior of the curves
for the 4p4d 3P2 and 4s4f 3F2 levels and the 4p2 1D2 and
4s4d 1D2 levels.

It is known that the crossing of energy levels inside a
complex with fixed J is forbidden by the Wigner and Neu-
mann theorem �see, for example, Ref. �31��. We can observe
from the top-right panel of Fig. 6 that the curves describing
the energy of the 4p4d 1F3 and 4s4f 3F3 levels do not cross
at Z=68 and that curve “3” stays above curve “2” for the
entire range Z=32–100. A similar behavior for the curves
describing the energy of the 4p4d 3P2 and 4s4f 3F2 levels
�top-left panel of Fig. 6� and of the 4p2 1D2 and 4s4d 1D2
levels �bottom-left panel of Fig. 6� may also be observed.
Additionally, it should be noted that the curves describing the
energy of the 4p4f 3D3 and 4d2 3F3 levels �bottom-right
panel of Fig. 6� are almost coincident with one another. The
difference in energies between the two levels is about 1% for
entire Z interval.

It should be noted that the LS designations were chosen
based upon small values of the multiplet splitting for low-Z

ions. To confirm those LS designations, we obtained the fine-
structure splitting for the even-parity 4s4d 3D, 4p2 3P,
4d2�3P , 3F�, 4p4f�3D , 3F , 3G�, and 4f2�3P , 3F , 3H� states and
odd-parity 4s4p 3P, 4s4f 3F, 4p4d�3P , 3D , 3F�, and
4d4f�3P , 3D , 3F , 3G , 3H� states.

The energy differences between levels of even- and odd-
parity triplet terms, divided by �Z−21�2, are illustrated in
Figs. 7 and 8, respectively. The energy intervals for the
4p2�3P2-3P1�, 4d2�3F4-3F3�, 4s4p�3P1-3P0�, 4p4d�3P1-3P0�,
and 4p4d�3D3-3D2� states are very small and almost do not
change with Z, as can be seen from Figs. 7 and 8. There is a
very sharp change of splitting around Z=70 for the
4p4d�3P2-3P1� terms, but the energies �E / �Z−21�2 change
by only a small amount, from −10 cm−1 to 35 cm−1. The
energy intervals vary strongly with Z for the 4p2�3P1-3P0�
and 4s4p�3P2-3P1� intervals. The triplet splitting for the
4s4d 3D, 4d2�3P , 3F�, 4p4f�3D , 3F , 3G�, 4s4f 3F,
4p4d�3P , 3D , 3F�, and 4d4f�3P , 3D , 3F , 3G , 3H� terms
change in the small interval of 50–150 in units of �Z
−21�2 cm−1, which amounts to 2%–5% of the energy of
those terms. Our calculations show that the fine structures of
almost all the levels illustrated in Figs. 7 and 8 do not follow
the Landé rules even for small Z. The unusual splitting may
be caused by changes from LS to j j coupling, with mixing
from other triplet and singlet states. The different J states are
mixed differently. Further experimental confirmation would
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FIG. 6. �Color online� Excitation energies �E / �Z−21�2 in cm−1 for Zn-like ions as a function of Z.
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be very helpful in verifying the correctness of these some-
times sensitive mixing parameters.

III. BREIT INTERACTION

The first-order Breit and second-order Breit-Coulomb
contributions B�1� and B�2� discussed above are obtained from
the E�1� and E�2� Coulomb expressions by changing gijkl
→gijkl+bijkl and keeping only terms that are linear in bijkl.
Here gijkl is the Coulomb matrix element. The term bijkl is a
two-particle matrix element of the Breit interaction �32�

B = −
�

r12
	�1 · �2 −

1

2
��1 · �2 − ��1 · r̂12���2 · r̂12��
 ,

�5�

where �1 is a Dirac matrix, r̂12=r12 /r12, and � is the fine
structure constant.

In this perturbative treatment of the Breit interaction, we
omit Breit contributions to the Dirac-Fock potential and
evaluate Coulomb and Breit-Coulomb corrections through
second order. This is the approach that was used in the pre-
vious section. In an alternative approach, to be considered in
this section, we include both Coulomb and Breit contribu-
tions to the Dirac-Fock potential �giving the Breit-Dirac-

Fock potential� and then treat the residual Breit and Cou-
lomb interactions perturbatively. The details of such a
treatment were discussed recently by Derevianko �33�, Kreu-
ter et al. �34�, and Dzuba et al. �35�.

Similar to the Coulomb interaction 1 /r12, inclusion of the
Breit interaction B creates a self-consistent Breit-Dirac-Fock
�BDF� potential. This requires developing a new code for the
DF functions: Breit-Dirac-Hartree-Fock �BDHF� to replace
our Dirac-Hartree-Fock �DFH� code. The difference in the
DF one-electron energies �E�nl� calculated by the DHF and
BDHF codes as functions of nuclear charge Z is illustrated in
Fig. 9. The difference between EDF�nl� calculated by the two
codes is positive for the 4s1/2, 4pj, and 4dj states for the
entire Z interval; however, it becomes negative for the 4f j
states for low-Z ions. The changes of sign in �E�4f j� lead to
the sharp feature on the curves describing the Z dependence
of �E�4f j� values seen in Fig. 9. The values of �E�4f j�
increase with Z as �Z−c�3 with the screening correction c
=21.

To calculate the correction to the energy matrix elements
arising from the Breit interaction, we modified the generation
of the B-spline basis set to intrinsically include the Breit
interaction on the same footing as the Coulomb interaction.
Once this is done, the one-potential operator, represented in
Figs. 1 and 2 by a solid circle, vanishes identically. This is
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FIG. 7. �Color online� Energy splitting �E / �Z−21�−2 in cm−1 for terms of even-parity states for Zn-like ions as a function of Z.
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analogous to the way that in nonrelativistic MBPT the cor-
responding one-potential operator vanishes when expanding
perturbatively around the HF potential. Thus, the contribu-
tions BV3 and BR4 now vanish identically. Otherwise, the
remaining contributions given in Tables II and III do not

change very much; the difference in new values is about
0.01%–0.1%. Additionally, we need to remove the one-
potential valence contribution from a first-order Breit correc-
tion, since that contribution was already incorporated in new
DF energies.

In Fig. 10, we illustrate the difference in the first-order
Breit term B�1� and second-order Breit-Coulomb term B�2�

calculated by using the DF and BDF potentials as functions
of nuclear charge Z. It should be noted that the values
of those differences for the first-order Breit contribution
�B�1��4l4l� 1,3LJ� are positive for the entire interval of Z.
However, the values of the differences for the second-order
Breit-Coulomb contribution �B�2��4l4l� 1,3LJ� are negative.
We can see from Fig. 10 that the values of
�B�1��4l4l� 1,3LJ� and �B�2��4l4l� 1,3LJ� increase by three to
four orders of magnitude when Z increases from Z=30 up to
Z=100. Such a sharp increase is similar to the increase of the
difference in one-electron eigenvalues �E�nl� for the DF and
BDF potentials. We already mentioned that the values
�E�4l� and �B�1��4l4l� 1,3LJ� have a different sign and partly
compensate each other. The �B�2��4l4l� 1,3LJ� values are
smaller than the �B�1��4l4l� 1,3LJ� values by a factor of 10.

Now let us compare the two versions of RMBPT, based
on the DF and BDF potential, respectively. As can be seen
from Table VI, a small difference in final energies exists. In
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FIG. 8. �Color online� Energy splitting �E / �Z−21�−2 in cm−1 for terms of odd-parity states for Zn-like ions as a function of Z.
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this table, we list the difference in energies of 4s2 1S0 and
4s4p 1,3P1 states calculated using the BDF and DF poten-
tials. The difference in the results obtained by two ap-
proaches increases slowly with Z from Z=36 up to Z=92.

In Table VII, we list energies of the 4s4p states given
relative to the ground state for Zn-like ions with Z=51–70.
Energies calculated by the BDF and DF versions of RMBPT
are compared with experimental measurements given by
Brown et al. �21�. We tabulate the following separate contri-
butions: zeroth- plus first-order energy E�0+1��E�0�+E�1�

+B�1�, second-order Coulomb energy E�2�, second-order
Breit-Coulomb correction B�2�, QED correction ELS, and to-
tal theoretical energy Etot. The values of Etot are compared
with Eexpt, and the difference �Etot−Eexpt� is denoted by �E.
We can see from this table that the value of �E is smaller for
the results obtained by the BDF approach. We use this ver-
sion of RMBPT in all results below.

Inasmuch as the one-body part of the Breit interaction,
which as mentioned earlier dominates the second-order
Coulomb-Breit energy, is included to all orders in the BDF
wave function, we expect an RMBPT approach based on the
BDF potential to be somewhat more accurate than one based
on the DF potential. Indeed, our expectation is confirmed by

the energy comparisons in Table VII. It should be noted that
frequency-dependent corrections to the Breit interaction,
which will lead to further small modifications of the theoret-
ical energies, are omitted in the present calculations.

IV. COMPARISON OF RESULTS WITH OTHER THEORIES
AND EXPERIMENTS

In Table VIII, we compare our RMBPT energies Etot in
Zn-like ions given relative to the ground state for ions with
Z=34–50 with experimental data Eexpt presented by Chu-
rilov et al. �11�. In this table, we present results for the 13
low-lying levels 4s4p�1P1 , 3PJ�, 4p2�1S0 , 3PJ , 1D2�, and
4s4d�1D2 , 3DJ�. We can see from Table VIII that the differ-
ence �E=Etot−Eexpt decreases when Z increases; however,
the value of �E for the 4s4d 1D2 level is equal to
−1013 cm−1 for Z=36, −196 cm−1 for Z=42, and
−1131 cm−1 for Z=50. Among the 13 levels listed in Table
VIII, we find the smallest value of �E is for the 4p2 1D2
level: 8–253 cm−1. For the 11 ions listed in Table VIII, we
find the best agreement between RMBPT and experimental
values for Mo12+; only for two levels is the value of �E about
700 cm−1. We cannot really explain why there is such a large
deviation in values of �E from one ion to another. It was
demonstrated previously �see Figs. 6–8� that the Z depen-
dences of the energy levels are rather smooth curves.

RMBPT energies of the 4s4p 1P1 level in Zn-like ions
with Z=70–92 are compared in Table IX with experimental
measurements Eexpt given by Träbert et al. �17�. We tabulate
the following separate contributions: zeroth- plus first-order
energy E�0+1��E�0�+E�1�+B�1�, second-order Coulomb en-
ergy E�2�, second-order Breit-Coulomb correction B�2�, QED
correction ELS, and total theoretical energy Etot. The values
of Etot are compared with Eexpt, and the difference �Etot

−Eexpt� is denoted by �E. We can see from this table that the
values of �E are smaller than any separate contributions,
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FIG. 10. �Color online� The difference in the first-order Breit
term B�1� and second-order Breit-Coulomb term B�2� in a.u. calcu-
lated by using a Breit-Dirac-Fock �BDF� and Dirac-Fock �DF� po-
tential as a function of the nuclear charge Z.

TABLE VI. The energy differences �cm−1� in results calculated
with a Breit-Dirac-Fock �BDF� potential and with a Dirac-Fock
�DF� potential.

Z 4s2 1S0 4s4p 3P1 4s4p 1P1

36 335 325 330

40 404 403 406

45 492 504 493

50 578 609 595

55 674 707 672

59 742 781 735

70 983 1059 990

74 1076 1159 1077

76 1124 1211 1121

79 1199 1290 1189

82 1278 1373 1260

83 1305 1401 1284

90 1508 1610 1458

92 1571 1674 1511
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TABLE VII. Energies �cm−1� of the 4s4p states given relative to the ground state for Zn-like ions with Z=51–70. Notation: E�0+1�

=E�0�+E�1�+B�1�, �E=Etot−Eexpt. Energy calculated with a Breit-Dirac-Fock �BDF� �RMBPT-b� and a Dirac-Fock �DF� �RMBPT-t� potential
are compared with experimental measurements given by Brown et al. �21�.

3P1
1P1

3P1
1P1

3P1
1P1

3P1
1P1

RMBPT-b RMBPT-t RMBPT-b RMBPT-t

Z=51 Z=52
E�0+1� 346120 522904 346167 522959 362524 552456 362579 552515
E�2� 3529 �4907 3509 �4914 3411 �5174 3304 �5057
B�2� �20 �30 �79 �93 �23 �34 �103 �118
ELS �2186 �2063 �2186 �2063 �2386 �2247 �2386 �2247
Etot 347443 515904 347411 515888 363525 545001 363394 545093
Eexpt 347441 516518 347441 516518 363533 545926 363533 545926
�E 2 �614 �30 �630 �8 �925 �139 �833

Z=53 Z=54
E�0+1� 379071 583183 379135 583247 395747 615144 395821 615211
E�2� 3295 �4810 3275 �4816 3365 �4655 2982 �4944
B�2� �25 �34 �107 �105 �26 �36 �137 �123
ELS �2598 �2442 �2598 �2442 �2822 �2647 �2822 �2647
Etot 379743 575897 379705 575884 396264 607806 395844 607498
Eexpt 379744 576442 379744 576442 396082 608280 396082 608280
�E �1 �545 �39 �558 182 �474 �238 �782

Z=55 Z=57
E�0+1� 412567 648429 412652 648500 446621 719268 446727 719346
E�2� 3101 �4718 3086 �4708 2854 �4356 2829 �4123
B�2� �29 �39 �132 �118 �35 �43 �174 �91
ELS �3063 �2867 �3063 �2867 �3583 �3343 �3583 �3343
Etot 412576 640805 412544 640807 445857 711526 445800 711789
Eexpt 412558 641276 412558 641276 445831 711587 445831 711587
�E 18 �471 �14 �469 26 �61 �31 202

Z=60 Z=63
E�0+1� 498782 837483 498926 837570 552299 972220 552485 972313
E�2� 2480 −4356 2418 �4395 2228 �4098 2200 �4107
B�2� �45 �51 �204 �129 �54 �57 �272 �150
ELS �4478 �4161 �4478 �4161 �5524 �5117 �5524 �5117
Etot 496739 828914 496663 828884 548948 962948 548889 962938
Eexpt 496857 829208 496857 829208 548847 963094 548847 963094
�E �118 �294 �194 �324 101 �146 42 �156

Z=64 Z=66
E�0+1� 570455 1021264 570657 1021357 607303 1126222 607538 1126315
E�2� 2132 �4017 2103 �4026 1955 �3839 1921 �3851
B�2� �57 �59 �293 �153 �64 �63 �337 �157
ELS �5909 �5469 �5909 �5469 �6736 �6226 �6736 �6226
Etot 566621 1011720 566559 1011709 602457 1116095 602386 1116081
Eexpt 566251 1011900 566251 1011900 602580 1113511 602580 1113511
�E 370 �180 308 �191 �123 2584 �194 2570

Z=68 Z=70
E�0+1� 644852 1241061 645121 1241152 683119 1366744 683426 1366829
E�2� 1703 �3738 1748 �3671 1590 �3504 1555 �3515
B�2� �72 �66 �384 �157 �80 �69 �429 �149
ELS �7646 �7057 �7646 �7057 �8644 �7971 �8644 �7971
Etot 638836 1230200 638840 1230266 675984 1355200 675908 1355193
Eexpt 639031 1229967 639031 1229967 674900 1355160 674900 1355160
�E �195 233 �191 299 1084 40 1008 33
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TABLE VIII. RMBPT energies Etot of Zn-like ions given relative to the ground state for ions with Z=34–50 are compared with
experimental data Eexpt presented by Churilov et al. �11�. �E=Etot−Eexpt. Units: cm−1.

4s4p 4s4p 4p2 4p2 4p2 4p2 4p2 4s4d 4s4d
3P0

3P1
3P2

1P1
3P0

3P1
3P2

1D2
1S0

3D1
3D2

3D3
1D2

Z=34

Etot 90309 91935 95591 130757 211886 214207 214072 218701 247840 257924 258169 258532 278126

Eexpt 89752 91335 94949 131733 211794 214089 213203 218618 248858 257533 257732 258066 279139

�E 557 600 642 �976 92 118 869 83 �1018 391 437 466 �1013

Z=36

Etot 117590 120333 126864 170570 274833 279358 280299 288198 322193 350043 350463 350962 378620

Eexpt 117390 120093 126553 170835 274932 279414 279715 288190 323036 349973 350417 351116 379488

�E 200 240 311 �265 �99 �56 584 8 �843 70 46 �154 �868

Z=41

Etot 186540 193278 212309 271242 432259 447924 450556 473922 517355 580012 581540 584046 627075

Eexpt 186370 193088 212044 271939 432669 448253 450414 473998 518094 580108 581633 584120 626459

�E 170 190 265 �698 �410 �329 142 �76 �739 �96 �93 �74 616

Z=42

Etot 200431 208176 230919 292613 463986 483220 486135 513962 559022 626693 628549 631622 676368

Eexpt 200311 207981 230639 293322 464442 483553 486037 514028 559817 626917 628737 631759 676564

�E 120 195 280 �709 �456 �333 98 �66 �795 �224 �188 �137 �196

Z=44

Etot 228268 238199 269908 337000 527848 555758 559253 597631 646495 721401 724024 728475 777709

Eexpt 228244 238118 269736 337727 528536 556205 559310 597781 646912 721791 724380 728801 778388

�E 24 81 172 �727 �688 �447 �57 �150 �417 �390 �356 �326 �679

Z=45

Etot 242350 253494 290539 360296 559951 593211 597003 641572 691895 769691 772761 778045 829509

Eexpt 242262 253346 290277 360610 560454 593613 596997 641627 692398 770097 773143 778260 830183

�E 88 148 262 �314 �504 �402 6 �55 �503 �406 �382 �215 �674

Z=46

Etot 256487 268867 311904 384093 592223 631492 635578 686990 738936 818629 822193 828418 882087

Eexpt 256490 268745 311648 384718 592868 631937 635575 687168 739610 819163 822568 828773 882990

�E �3 122 256 �625 �645 �445 3 �178 �674 �534 �375 �355 �903

Z=47

Etot 270697 284365 334088 408696 624639 670669 675046 734016 787605 868301 872407 879689 935529

Eexpt 270621 284251 333853 409312 625293 671127 675156 734179 787252 868764 872961 880128 936512

�E 76 114 235 �616 �654 �458 �110 �163 353 �463 �555 �439 �983

Z=48

Etot 285138 300137 357296 434285 657271 710950 715618 782904 837988 918928 923625 932094 990073

Eexpt 284831 299825 356855 434699 657783 711164 715502 782812 838635 919338 923991 932255 990770

�E 307 312 441 �415 �512 �214 116 92 �647 �410 �366 �161 �697

Z=49

Etot 299088 315457 380861 460193 689781 751682 756638 833041 890436 969856 975197 984989 1045108

Eexpt 299171 315385 380737 460878 690470 752160 756771 833140 890693 970737 976028 985393 1045944

�E �83 72 124 �685 �689 �478 �133 �99 �257 �881 �831 �404 �837

Z=50

Etot 313680 331455 405970 487609 722842 794051 799296 885669 944610 1022283 1028322 1039585 1101799

Eexpt 313704 331470 405823 488338 723614 794616 799558 885922 945055 1023075 1029054 1040127 1102930

�E �24 �15 147 �729 �772 �566 �263 �253 �445 �792 �732 �542 �1131
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except the values of the second-order Breit-Coulomb contri-
butions B�2�. We obtain excellent agreement between our
RMBPT values and experimental measurements; the �E val-
ues are 0.003%–0.1% of Eexpt.

In Table X, we compare our RMBPT energies Etot with
recently published theoretical predictions Etheo made by Vil-
kas and Ishikawa �23� ��E=Etot−Etheo�. A relativistic
MR-MP perturbation theory was used in Ref. �23�. Both LS
and j j designations are used in Table X. Our j j designations
are the same as those of Vilkas and Ishikawa �23�, except for
five cases where we use 4dj4dj��J� designations instead of
the 4pj4f j��J� designations used in Ref. �23�. We demon-
strated previously a large mixing between the 4p4f LSJ and
4d2 LSJ states �see the curves describing the energy of the
4p4f 3D3 and 4d2 3F3 levels shown on bottom-right panel of
Fig. 6�. The strong mixing between the 4d3/24d5/2�2� and
4d5/24d5/2�2� states leads to interchanges between those
states as Z varies �compare the fourth and fifth lines from the
bottom of Table X�. We can see from this table that the
difference �E=Etot−Etheo is about 100–1000 cm−1 for most
cases; however, there are some discrepancies that we cannot
explain. The value E=2 674 915 cm−1 in the column with
heading Z=70 appears twice in Table II of Ref. �23�. This
value differs from our RMBPT values for the energy of the
4p3/24p3/2�2� level by 978 cm−1; however, the �E for the
4s1/24d5/2�2� level is equal to 145 238 cm−1. We think this
was a misprint in Ref. �23�, and we do not include this num-
ber in the column headed “�E” in Table X. Similar problems
were found for the 4p3/24f7/2�3� level with Z=76 �we do not
include this in Table X�.

V. CONCLUSION

We have presented a systematic second-order relativistic
RMBPT study of excitation energies in Zn-like ions with

nuclear charges Z=30–100. Two alternative treatments of
the Breit interaction are investigated. In the first version, we
omit Breit contributions to the Dirac-Fock potential and
evaluate Coulomb and Breit-Coulomb corrections through
second order perturbatively. In the second version, we in-
clude both Coulomb and Breit contributions to the Dirac-
Fock potential and then treat the residual Breit and Coulomb
interactions perturbatively. Results obtained from the two
versions are compared and discussed. Good agreement of

TABLE X. RMBPT energies �Etot� given relative to the ground
state for ions with Z=70 and 92 are compared with the theoretical
results of Vilkas and Ishikawa �23�. Units: cm−1.

Z=70 Z=92

Etot �E Etot �E

4s1/24p1/2
3P0 626926 �443 1053096 �1329

4s1/24p1/2
3P1 675908 �320 1138177 �1105

4s1/24p3/2
1P1 1355193 607 3822722 3528

4s1/24p3/2
3P2 1228178 277 3641664 3030

4p1/24d3/2
3D1 3175602 224 6734510 �60

4p1/24d3/2
1D2 3247490 371 7177846 583

4p3/24d3/2
3P0 3729898 873 9246895 4266

4p3/24d3/2
3P1 3738223 912 9260385 4324

4p3/24d5/2
1P1 3941327 1180 9888754 5344

4p3/24d5/2
3P2 3832264 1067 9732479 4970

4p1/24d5/2
3F2 3696247 854 7829066 3137

4p1/24d5/2
3F3 3776341 1375 8031419 3601

4p3/24d3/2
3D2 3758557 1246 9212337 4230

4p3/24d3/2
3D3 3805414 1109 9272971 4319

4p3/24d3/2
1F3 3973937 1246 9850742 5250

4p3/24d5/2
3F4 3827296 1267 9667304 4779

4s1/24f5/2
3F2 3053889 18 6546122 �474

4s1/24f5/2
3F3 3244686 352 7185112 622

4s1/24f7/2
1F3 3676406 907 7838749 3121

4s1/24f7/2
3F4 3732084 1077 7980913 3635

4p1/24p1/2
3P0 1432379 �339 2384828 �1958

4p1/24p3/2
3P1 1988261 170 4899480 2227

4p1/24p3/2
3P2 1999179 106 4915688 2175

4p2/24p3/2
1S0 2678559 1109 7610621 6965

4p3/24p3/2
1D2 2675893 978 7517442 6652

4s1/24d3/2
3D1 2392629 393 5438127 773

4s1/24d3/2
3D2 2413199 434 5491308 938

4s1/24d5/2
1D2 2529677 6056852 1738

4s1/24d5/2
3D3 2519173 611 5965995 1541

4d3/24d3/2
3F2 5071288 1450 11625191 6004

4d3/24d5/2
3P1 5090731 1628 11640414 6598

4d3/24d5/2
3F3 5095503 1795 11752270 7016

4d3/24d5/2
1D2 5193953 1482 12074529

4d5/24d5/2
3P2 5100002 11831974 6651

4p3/24f7/2
3D3 5049989 1678 11589762 5881

4p3/24f7/2
3G4 5023511 586 11670872 6403

4p3/24f7/2
3G5 5080042 1759 11741171 6997

TABLE IX. Excitation energies of 4s4p 1P1 levels in Zn-like
ions. Experimental values Eexpt are given by Träbert et al. �17�.
Units: cm−1 .

Z=70 Z=74 Z=76 Z=79

E�0+1� 1366744 1655120 1820238 2097800

E�2� �3504 �3117 �2916 �2603

B�2� �69 �72 �72 �70

ELS �7971 �10070 �11264 �13250

Etot 1355200 1641862 1805987 2081876

Eexpt 1355160 1642036 1805576 2080806

�E 40 �174 411 1070

Z=82 Z=83 Z=90 Z=92

E�0+1� 2415825 2531800 3508421 3848972

E�2� �2275 �2162 �1301 �1029

B�2� �65 �63 �32 �18

ELS �15502 �16318 �23006 �25263

Etot 2397983 2513258 3484082 3822662

Eexpt 2397018 2511610 3480646 3818820

�E 965 1648 3436 3842
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our RMBPT data with other accurate experimental measure-
ments leads us to conclude that the RMBPT method provides
accurate data for Zn-like ions. Results from the present
calculations provide benchmark values for future theoreti-
cal and experimental studies of the zinc isoelectronic
sequence.
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