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The quantum electrodynamics (QED) corrections are directly incorporated into the most accurate
treatment of the correlation corrections for ions with complex electronic structure of interest to metrology
and tests of fundamental physics. We compared the performance of four different QED potentials for
various systems to access the accuracy of QED calculations and to make a prediction of highly charged ion
properties urgently needed for planning future experiments. We find that all four potentials give consistent
and reliable results for ions of interest. For the strongly bound electrons, the nonlocal potentials are more
accurate than the local potential.
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In 2015, a sympathetic cooling of Ar13þ with laser
cooled Beþ ions was demonstrated [1], elevating highly
charged ions (HCI) to the realm of applications previously
limited to singly charged ions currently used for atomic
clocks [2], quantum information [3], and other applications
requiring laser cooling and trapping. Optical transitions
in heavy many-electron HCIs have been recently proposed
for the development of ultraprecision atomic clocks and
tests of fundamental physics [4–8]. The experimental work
toward the realization of these proposals has already started
[9], but locating these ultranarrow optical transitions has
proven to be very difficult. For most of these ions, no
experimental data exist and identification of their compli-
cated atomic spectra is a very difficult task unless accurate
theoretical predictions are available.
The required calculations also present a difficult task due

to very large cancellations of the energies of upper and lower
states. Since the ions of interest have a relatively low degree
of ionization, 8þ to 18þ, high-order electron correlation,
Breit interaction, and radiative quantum electrodynamic
(QED) corrections are all important, with the cancellation
of these contributions making accurate computations even
more difficult [7]. As a result, it has become urgent to
accurately includeQEDcorrections in the calculations of the
electronic structure of suchmany-electron ions, and evaluate
the uncertainty associated with the QED treatment.
Nonempirical calculations of radiative corrections using

the QED perturbation theory for many-electron systems are
extremely complicated and time consuming. To date, all-
order high-accuracy calculations can be performed only for
highly charged few-electron ions (see, e.g., [10–23] and
references therein), or using the same perturbative methods
for many-electron systems, but with an effective screening
potential [24–29]. This potential can be constructed using
Dirac-Hartree and Dirac-Fock-Slater methods, or density

functional theory in the local density approximation.
Ab initio QED methods are too complicated to be directly
incorporated into the Dirac-Coulomb-Breit many-electron
calculations. For this reason, numerous attempts have been
undertaken to propose simple methods for incorporating
QED corrections into the many-configuration Dirac-Fock,
configuration interaction Dirac-Fock, and relativistic many-
body perturbation theory (MBPT) codes using different
QED model potentials (see, e.g., [30–41] and references
therein).
Present work resolves the problem of accurate treatment

of quantum electrodynamic corrections for many-electron
ions of interest to metrology and tests of fundamental
physics. For the first time, the QED corrections are directly
incorporated into the most accurate treatment of the corre-
lation corrections for multivalent atoms: a high-precision
relativistic hybrid approach that combines configuration
interaction (CI) and a linearized variant of the single-double
coupled-cluster method, generally referred to as the CIþ
all-order approach [42]. We have applied our method
toHCIs of interest tometrology, carrying out all calculations
with four different QED potentials, and evaluated the
accuracy of the QED results. Our work presents the first
systematic study of the QED accuracy for heavymultivalent
HCIs and answers the following questions: (1) how accurate
are various model potentials; (2) how much the QED
correction in HCIs depends on the version of the model
potential being used; (3) how important is it to include the
QED corrections when constructing the basis set orbitals;
(4) how do QED contributions in such many-electron
systems depend on the treatment of the correlation correc-
tions. Using our new method, we give a new prediction for
the 5f6p22F5=2 − 5f26p2F9=2 clock transitions energy of
Cf15þ, which is particularly well suited for the search for
variation of the fine-structure constant [8].
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Our point of departure is the Dirac-Fock-Breit method
used to generate core and valence electronic orbitals. To
form a complete finite basis set for all coupled-cluster
calculations, we generate a large (N > 400) set of virtual
orbitals. The QED correction is incorporated into the basis
set orbital via the model QED potentials described below.
Then, we use the linearized coupled-cluster approach to
construct an effective Hamiltonian that includes core-core
and core-valence corrections [42]. This procedure includes
dominant classes of the perturbation theory terms involving
core excitations to all orders. In constructing the effective
Hamiltonian, all core-core and core-valence single and
double excitations to all basis set orbitals are included. The
QED corrections are added to the one-electron matrix
elements of the effective Hamiltonian, which also includes
Dirac-Fock-Breit potential of the core and Coulomb-Breit
interactions of the valence electrons. An atomic spectrum
is found by diagonalization of the effective Hamiltonian in
the configurational space, and the matrix elements for
various (electric-dipole, magnetic-dipole, hyperfine, etc.)
operators are obtained using the resulting wave functions.
Our configuration space includes [21spdf18g] orbitals.
The CI space only has to include the valence electrons
since the core excitations from all core shells are already
included into the effective Hamiltonian. Therefore, the
configuration space can be made effectively complete for
up to four valence electrons. An algorithm for the efficient
selection of dominant configurations for three-four valence
electrons and the corresponding accuracy of the CI calcu-
lations has been discussed in detail in [43].
Since the main issue in the evaluation of the accuracy of

the QED is the question of which QED model potential
gives the best accuracy, we included four different QED
potentials, which differ in their treatment of the self-energy
contribution. We carried out all calculations and accuracy
tests for all four potentials.
The one-electron QED potential is separated into three

contributions:

VQED ¼ VSE þ VUehl þ VWK; ð1Þ

where VSE is the self-energy operator, VUehl and VWK are
the Uehling and Wichmann-Kroll parts of the vacuum
polarization, respectively. Both VUehl and VWK are local
potentials, so their treatment is rather straightforward and is
the same in all four versions of the calculations. The
Uehling potential can be evaluated by a direct numerical
integration of the well-known formula [44], or, more easily,
by using the approximate formulas from Ref. [45]. A direct
numerical evaluation of theWichmann-Kroll potential VWK
is rather complicated. For the purpose of the present work,
it is sufficient to use the approximate formulas for the
pointlike nucleus from Ref. [46]. We label four QED
methods used to include the self-energy M1 −M4 and
briefly describe their main features below.

QED potential M1.—Following [39,47] we approximate
the one-electron SE operator as the sum of local VSE

loc and
nonlocal Vnl potentials

VSE ¼ VSE
loc þ Vnl; ð2Þ

where nonlocal potential is given in a separable form

Vnl ¼
Xn
i;k¼1

jϕiiBikhϕkj: ð3Þ

Here, ϕi are so-called projector functions. The choice of
these functions depends on the method of construction of
the nonlocal potential Vnl and is described in details in [39].
The constants Bik are chosen so that the matrix elements
of the model operator VSE

ik calculated with hydrogenlike
wave functions ψ i have to be equal to matrix elements Qik
of the symmetrized exact one-loop energy-dependent SE
operator ΣðεÞ [48]:

hψ ijVSEjψki ¼ Qik ¼
1

2
½ΣðεiÞ þ ΣðεkÞ�: ð4Þ

Introducing two matrices ΔQik ¼ Qik − hψ ijVSE
locjψki and

Dik ¼ hϕijψki, we find that

Bik ¼
Xn
j;l¼1

ðD−1Þjihψ jjΔQjljψ liðD−1Þlk: ð5Þ

The local part of the SE potential in [39] was taken to be

VSE
loc;kðrÞ ¼ Ak expð−r=ƛCÞ; ð6Þ

where the constant Aκ is chosen to reproduce the SE shift
for the lowest energy level at the given κ in the corre-
sponding H-like ion, and ƛC ¼ ℏ=ðmcÞ. The QEDMOD

computation code based on this method was published
in Ref. [47].
QED potential M2.—In this approach we use the same

equations (2), (3), (5) to construct the SE potential, but use
radiative potential developed in [33,49] for the local part. In
[33], the self-energy part of the total radiative potential is
divided into three terms:

VSE
loc ¼ Φrad ¼ Φmag þ Φlf þ Φhf ; ð7Þ

where the potentialsΦmag, Φlf , andΦhf are referred to as the
magnetic form factor, the low- and high-frequency parts of
the electric form factor, respectively, according to [33]. The
expressions for these potentials are given by Eqs. (7, 9, 10)
in [33]. Then, we obtain for the total SE potential

VSE ¼ Φrad þ
Xn
i;k¼1

jϕiiBikhϕkj: ð8Þ

The electric form factor contains some fitting parameters to
reproduce the SE corrections for 5s and 5p states of heavy
H-like ions. However, the local radiative potential Φrad
gives the SE contribution for the 1s state with only 10%
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accuracy [33] (see methodM3 below). The SE potential (8)
which contains the nonlocal part in addition to the local
radiative potential reproduces the low lying SE corrections
of the H-like ions exactly.
QED potential M3 (local radiation potential).—Here,

we neglect the nonlocal term in (8) and use local radiative
potential VSE ¼ VSE

loc ¼ Φrad from Eq. (7) as a full SE one-
electron potential introduced in [33]. This radiative potential
waswidely used inmany-electron calculations, for example,
see [34,38,41,50], and references therein.Note that this local
potential was optimized for weakly bound valence states of
heavy neutral atoms and may be less accurate for strongly
bound ionic, or core states.
QED potential M4.—This approach developed in [36] is

similar to the method M2, with the SE operator given by
Eq. (8), but using a different choice of the projector
functions B0

ik and only diagonal matrix elements Qii.
To assess the accuracy of these potentials, we compare the

SE values obtained using M1, M2, M3, and M4 methods
with the ab initio calculations of Refs. [24] and [28],
respectively, to which we refer as “exact”. Calculations of
the SE shifts in Refs. [24,28] were performed with the local
potential VeffðrÞ:

VeffðrÞ¼VnucðrÞ−
Z∞

0

dr0
ρðr0Þ
r>

þxα

�
81

32π2
rρðrÞ

�
1=3

; ð9Þ

where VnucðrÞ is nuclear potential and ρðrÞ is the total
electron charge density. The choice of xα ¼ 2=3 corre-
sponds to the Kohn-Sham potential, and xα ¼ 1 is the Dirac-
Fock-Slater potential.
Our data were obtained by averaging the SE operator

VSE with the wave function of the valence state determined
from the Dirac equation with the potential VeffðrÞ.
In Table I, the SE shifts for the ground ns states of the

neutral alkali atoms are given in terms of function FðαZÞ,
defined by

ΔESE ¼ α

π

ðαZÞ4
n3

FðαZÞmc2: ð10Þ

In Table II we present the SE corrections calculated for the
4s-4p and 4p-4d transition energies of Cu-like ions. Tables I
and II illustrate that the SE shifts obtained using M1, M2,

and M4 methods are in very good agreement with exact
results, at the level of 1% or better for theM1 andM2 QED
potentials.We find 5%–10% discrepancies between the data
calculated using the local radiative potential (method M3)
and exact values. We note that method M3 was recently
modified in Ref. [41], where more complicated and accurate
finite size correction to the radiative potential and additional
fitting for the d states were introduced. Comparisons for all
alkali-metal atoms and other Cu-like ions are given in the
Supplemental Material [51].

TABLE I. The self-energy function FðαZÞ for the ground states
of neutral alkali metals calculated using the methods M1 −M4.
The row “Exact” presents ab initio results from Ref. [24].

Method Na K Cs Na K Cs
xα ¼ 2=3 xα ¼ 1

M1 0.1829 0.0827 0.0163 0.2239 0.1095 0.0236
M2 0.1826 0.0826 0.0162 0.2237 0.1094 0.0236
M3 0.1911 0.0856 0.0166 0.2324 0.1128 0.0241
M4 0.1848 0.0831 0.0163 0.2253 0.1098 0.0236
Exact 0.1814 0.0829 0.0162 0.2233 0.1097 0.0235

TABLE II. The SE correction to the 4s-4p and 4p-4d,
transition energies in Cu-like ions (eV) for xα ¼ 2=3. Rows
“Exact” present ab initio results from Ref. [28].

Ion Method
4s-
4p1=2

4s-
4p3=2

4p1=2-
4d3=2

4p3=2-
4d3=2

4p3=2-
4d5=2

Yb41þ M1 −1.28 −1.21 −0.11 −0.18 −0.14
M2 −1.28 −1.20 −0.11 −0.18 −0.14
M3 −1.28 −1.21 −0.12 −0.19 −0.15
M4 −1.28 −1.20 −0.11 −0.19 −0.14
Exact −1.28 −1.21 −0.11 −0.18 −0.14

U63þ M1 −4.22 −4.33 −0.90 −0.79 −0.63
M2 −4.23 −4.32 −0.89 −0.79 −0.63
M3 −4.12 −4.24 −0.97 −0.85 −0.71
M4 −4.23 −4.32 −0.89 −0.80 −0.64
Exact −4.24 −4.33 −0.88 −0.79 −0.65

TABLE III. A comparisonof theQEDcorrections obtainedusing
methods M1 −M4 to the energies of Ba8þ, Eu14þ, and Cf15þ

calculated in the CIþ all-order approach (cm−1). The column
labeled M10 gives results of the CIþMBPT calculation. The
column labeled CI-M1 gives results of the calculation where QED
potential was included only in CI Hamiltonian. The first variant of
the QED potential (M1) was used in both of these calculations.

Ion Configuration Term CI-M1 M10 M1 M2 M3 M4

Ba8þ 5s2 1S0 974 972 965 955 987 964
5p2 3P0 28 −30 −31 −34 −24 −33
5p2 3P1 56 5 4 2 13 4
5p2 1D2 113 69 69 69 81 71
5s5d 3D1 484 459 455 449 464 453
5s5p 3P0 503 471 469 462 483 467
5s5p 1P1 538 513 508 503 524 508
4f5s 3F2 472 438 435 430 439 434
4f5s 1F3 462 424 421 416 425 420

Eu14þ 4f26s 3.5 1025 780 778 766 762 774
4f26s 4.5 1024 779 777 766 761 773
4f3 4.5 0 −426 −421 −420 −474 −424
4f3 5.5 0 −425 −420 −419 −473 −423

Cf15þ 5f6p2 2F5=2 828 −265 −238 −249 −178 −266
5f26p 4I9=2 431 −781 −762 −769 −815 −788
5f6p2 2F7=2 737 −468 −353 −363 −319 −380
5f26p 2F5=2 464 −730 −722 −729 −766 −748
5f26p 2G7=2 512 −584 −655 −662 −683 −681
5f26p 4I11=2 425 −781 −762 −768 −814 −787
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We selected three representative highly charge ions with
different electronic configurations as the test cases for our
method. All of these ions were included in the studies of the
applications of HCIs to the development of clocks and tests
of the variation of the fundamental constants [7,8,52,53].
Ba8þ was selected owing to the availability of the exper-
imental values for comparison, Eu14þ was chosen as the test
case with the f3 configuration, and Cf15þ has the largest
sensitivity to the alpha variation in a system which satisfies
all the requirements for the development of accurate optical
atomic clocks [8]. To separate the QED corrections, the
CIþ all-order computations were carried out with and
without the QED corrections and the difference was taken
to be the QED contribution.
A comparison of the QED corrections to the energies of

Ba8þ, Eu14þ, and Cf15þ ions obtained using four QED
potentials is given in Table III. We would like to attract the
reader’s attention to unexpectedly large QED corrections for
the 5f state of Cf15þ. One expects that the QED corrections
for the 4f and 5f orbitals are zero owing to no overlap with
the nucleus. However, the addition of the QED potential
modifies the Dirac-Fock-Breit self-consistent potential lead-
ing to changes of energies of the 5f orbitals. To confirm this,
we carried out a separate calculation, including the QED
potential only in the CI Hamiltonian, and constructing
orbitals with no QED correction. These results are listed
in Table III in the column labeled CI-M1. The QED
correction for the ground 5f6p2 2F5=2 state, 828 cm−1, is
close to twice a QED corrections for the 6p states, with zero
contribution for the 5f states. Including the QED in the
potential used to construct the orbitals both reduces the QED
correction for the6p states and leads to large (≈ − 460 cm−1)
negative QED correction for the 5f orbital reversing the sign
of the total QED correction of the 5f6p2 configuration.
As we discussed above, both M1 and M2 potentials give

results within 1% of the “exact” ab initio calculation; there-
fore, we estimate the uncertainty in the QED correction as a

difference of theM1 andM2 results listed in Table III, which
does not exceed 12 cm−1. This is far below the uncertainty in
the treatment of the Coulomb correlations. Therefore, it is
important to explore if QED correction depends on the
accuracy of the correlation correction treatment. To answer
this question, we carried out the same calculations using
the less accurate method that combines CI and MBPT
[54,55] approaches. In the CIþMBPT method, an effective
Hamiltonian is constructed using the second order of MBPT,
omitting all high-order core-core and core-valence correla-
tion corrections included in the CIþ all-order method. CIþ
MBPT results are listed in column labeled M10. The
differences between the QED contributions calculated in
the CIþMBPT and CI-all-order methods are small for Ba8þ

and Eu14þ, but significant for J¼7
2
5f6p2 and 5f26p levels

of Cf15þ. These J¼7
2
levels are strongly mixed and all-order

corrections change weights of 6p and 5f electrons in the
many-electron wave function, which affects the total QED
correction for the configuration. Therefore, we conclude that
incorporation of the QED into the most accurate treatment of
the correlation correction is essential for the accurate pre-
diction of the properties of HCIs of interest.
The QED corrections to the energies of Ba8þ, Eu14þ,

Cf15þ calculated using the CIþ all-order method with the
first version of the QED potential are given in Table IV to
illustrate the relative size of the QED corrections to the
energy levels. All values are given relative to the correspond-
ing ground states. Final values that include QED corrections
are given in columns “Total.” The non-QED part of the
calculation is the same as in [7,8,52,53]. The QED correc-
tions arevery significant for low-lying 4f3 levels ofEu14þ, so
we have also included the CIþ all-order values without
QED for clarity. Table IV also includes the effective three-
electron (3e) interaction between valence electrons, recently
treated in the framework of the CIþ all-order approach in
[56]. Our final results for Ba8þ are in excellent agreement

TABLE IV. Transition energies (cm−1) for Ba8þ, Eu14þ, and Cf15þ calculated using the CIþ all-order method andM1 version of QED
potential. Experimental results for Ba8þ are from Ref. [57]. Columns QED, 3e, and Total present QED corrections, contribution of the
effective three-electron interactions [56], and final theoretical values, respectively. The columns “Conf.”, “Expt.”, and “Diff.” denote the
list of configurations, experimental values, and relative difference of the theory with the experiment in percent respectively.

Conf. Term Expt. QED Total Diff. Conf. Term CIþ all QED 3e Total Conf. Term QED 3e Total

Ba8þ Eu14þ Cf15þ

5s2 1S0 0 0 0 4f25s 3.5 0 0 0 0 5f6p2 2F5=2 0 0 0
5s5p 3P0 116 992 −496 117 769 0.66% 4f3 4.5 3161 −1199 −700 1262 5f26p 2F9=2 −524 119 128 98
5s5p 3P1 122 812 −491 123 492 0.55% 4f25s 4.5 2594 −1 1 2594 5f6p2 2F7=2 −115 −18 220 18
5s5p 3P2 142 812 −455 143 661 0.59% 4f3 5.5 7275 −1198 −689 5388 5f26p 2F5=2 −484 29 271 27
5s5p 1P1 175 712 −457 175 683 −0.02% 4f25s 5.5 6699 1 −4 6696 5f26p 2G7=2 −416 −45 29214
4f5s 3F2 237 170 −530 236 939 −0.10% 4f25s 1.5 9705 1 −3 9703 5f26p 4I11=2 −523 48 370 81
4f5s 3F3 237 691 −530 237 457 −0.10% 4f3 6.5 11513 −1197 −683 9633 5f26p 4H9=2 −528 37 379 01
4f5s 3F4 238 547 −530 238 294 −0.11% 4f25s 2.5 11300 1 −3 11298 5f26p 4G7=2 −511 54 402 06
4f5s 1F3 245 192 −544 245 280 0.04% 4f25s 6.5 11420 3 −9 11414 5f26p 2D5=2 −525 45 422 87
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with experiment [57], demonstrating sub-% accuracy of the
theoretical energy levels.
In summary, we find that accurate treatment of the QED

effects is essential for a reliable prediction of the transition
energies in HCIs with optical transitions. The QED
corrections in these ions are large enough to significantly
affect the predictions of the transition wavelengths, but the
correlation correction also has to be treated to high
accuracy. Our results show that the QED corrections
obtained by all four QED potentials are very similar, with
the difference being smaller than the estimated uncertainty
in the treatment of the correlation correction. We find that it
is imperative to include the QED correction both in the
construction of the basis set orbitals and into the CI
Hamiltonian, in particular, for the configurations involving
5f electrons, as in the example of Cf ion. This work also
provides a revised value of the Cf15þ clock transition which
has the highest enhancement of the α variation [8] in a
system which also satisfies all criteria for the construction
of the ultraprecise clock. Our method is generally appli-
cable to treat any HCIs with up to four valence electrons.
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